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Abstract

The High Acceptance Di-Electron Spectrometer (HADES) is a large particle detector and at
the same time an extremely complex device. It is located in Darmstadt, Germany at the GSI
Helmholtzzentrum and has a wide application range in hadron and heavy ion physics. Currently,
the entire GSI research facility undergoes an upgrade, as well as the detector. The electronics
require a new bus system, faster data acquisition routines and higher tracking precisions to meet
all the requirements for the upcoming experiments. The HADES spectrometer is composed
of numerous sub-detectors and sub-systems. Recently, a unified bus has been developed to
combine all the different detector parts together. Internal communication now applies a fast
optical network with bandwidths of 1–2 Gbit/s. Although the system supports error detection
and avoids deadlocks, it is of great importance to monitor the devices and analyze their data.
For this occasion and to generate new, interesting statistics, a monitoring system needs to be
developed.

The main task of this thesis is to create a comprehensive monitoring facility that provides a
real-time access to the detector components, allowing precise analysis of the electronics, as well
as additional hardware testing. Since all detector data needs to pass the readout nodes and the
network hubs, all signals are present in a digitalized state on the FPGAs of these components.
The implementation therefore buffers all the monitoring signals on the FPGA chips of front-
ends, readout nodes and network hubs in highly customizable storage cells (FIFOs and registers).
The buffered signals are read out through the optical network and gathered on a designated
board operating as a monitoring server. The board uses a TCP/IP connection to extract the data
to the client(s) over Ethernet. On the client side, the user may control the monitoring facility
either through a Linux shell, or using an EPICS GUI, in which case the monitored data can be
additionally visualized.

The key feature is to develop a system which is versatile and highly scalable. One source code
is being used to suit all the sub-detectors. After a proper configuration, all the necessary infor-
mation is stored on a ROM on every monitoring chip, thus the FPGAs work independently from
each other and may contain different monitoring setups. Every signal possesses a timestamp
and a synchronization of all signals can be achieved through different timer domains. The client
PC is able to reconstruct the entire monitoring setup by reading out the ROM contents and then
allows the user to send instructions to the server, grouping the chips together and visualizing
them accordingly.
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Zusammenfassung

In Darmstadt am GSI Helmholtzzentrum für Schwerionenforschung sind verschiedene Exper-
imente zur Atom- und Kernphysik installiert. Hier befindet sich unter anderem der HADES
Teilchendetektor (High Acceptance Di-Electron Spectrometer). Seine Aufgabe ist es, in ’fixed-
target’ Experimenten nach Elektron-Positron-Paaren zu suchen, die aus dem Zerfall von Vek-
tormesonen (z.B. ρ0) stammen und auf die Beantwortung der Frage zielen, wie die starke
Wechselwirkung (QCD1) die Massen der Hadrone2 generiert. HADES wurde konstruiert um
solche äußerst seltenen Ereignise zu analysieren. Diesbezüglich setzt es eine Kombination aus
mehreren unterschiedlichsten Subdetektoren ein.

Gegenwärtig befindet sich an der GSI eine weitere Forschungseinrichtung (FAIR) im Aufbau.
Hier sollen zukünftige Experimente mit höherer Präzision und Datenraten installiert werden.
In diesem Zusammenhang muss auch HADES an die neuen Anforderungen angepasst werden.
Dazu wurde insbesondere das Trigger-System überarbeitet und die Geschwindigkeit der Daten-
auslese durch ein schnelles optisches Netzwerk verbessert. Die meisten elektronischen Bus-
Komponenten besitzen mittlerweile optische Links mit denen eine Bandbreite von 1–2 Gbit/s
erzielt werden kann. Erst dadurch eignet sich der Detektor für die neuen anspruchsvolleren
Versuche.

Da sich weitere Subdetektoren im Aufbaustadium befinden und der Systemumbau noch nicht
abgeschlossen ist, ist es wichtig alle Neuerungen und ihre Eigenschaften im Auge zu behalten
und zu analysieren. Der Systembus ist zwar entwickelt worden um Deadlocks zu vermeiden,
aber wenn es dennoch zu Fehlfunktionen kommt ist es von äußerster Wichtigkeit schnell die
Ursache(n) dafür zu finden. Aus diesen Gründen wurde im Rahmen dieser Arbeit ein allum-
fassendes Monitoring-System entwickelt. Das System soll eine Möglichkeit bieten die Elek-
tronik zu überwachen, alle Systeme während des Betriebs zu analysieren und Statistiken zu
entwerfen.

Die Herausforderung dabei ist es ein System zu entwickeln, das sowohl auf allen gegenwärti-
gen Subdektoren eingesetzt werden kann, als auch zukunftsoffen ist. Auf der anderen Seite darf
der Ressourcenverbrauch nicht zu hoch ausfallen um in die Auslesesysteme integriert zu werden.
Das Monitoring Tool muss auf der anderen Seite jedoch Möglichkeiten bieten, die Hardware in
Echtzeit zu analysieren. Es soll wie ein universeller Logic Analyzer überall dort Anwendung
finden, wo digitale Komponenten eingesetzt werden.

Die HADES Auslese und Front-Ends verwenden FPGA-Chips. Die rekonfigurierbare Logik
der FPGAs bildet das Grundgerüsst der Datenauslese. Das ressourcen-schonende Monitoring-
System ist auf diesen Chips ebenfalls mitzuintegrieren. Das bietet sich an, da alle Daten ohnehin
in den Front-End-Modulen zur Verfügung stehen. Das Monitoring System läuft unter dem Na-
men DEMON (real-time DEvice MONitoring framework) und wird auf vielen unterschiedlichen

1Quanten Chromo Dynamik
2Hadrone sind sub-atomare Teilchen die Quarks (spezialle elementare Teilchen) enthalten.
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Detektor-Chips der Auslese-Elektronik und in den meisten Fällen direkt auf den Detektor Front-
Ends laufen. Die Konfiguration setzt dabei einen orthogonalen Ansatz ein. Wenn man das
System auf einem Chip ändert, darf es nicht die Arbeitsweise anderer Systeme oder deren Mon-
itoring Software beeinflussen. Aus diesem Grund werden alle Konfigurations-Informationen
lokal auf dem Chip in einem ROM gespeichert. Das ROM ermöglicht die Rekonstruktion aller
detektor-spezifischen DEMON Einstellungen des Chips.

Über eine FPGA-Schnittstelle werden die Daten an DEMON weitergegeben. Dieses, als IP-
Core eingesetzte Modul, puffert die Signale in Form von Rohdaten in den FIFOs und Registern
und versieht sie zusätzlich mit einem Zeitstempel. Um den Anforderungen zu genügen, wurden
viele FIFO-Arten vordefiniert und mehrere Timer zur Verfügung gestellt um sich jeder Situation
anzupassen. Die Breite, Tiefe, Aufnahmefrequenz, Timer-Informationen, und vieles mehr läßt
sich über eine zentrale Konfigurationsdatei einstellen. Die Informationen dieser Datei werden
direkt in ein embedded ROM übernommen und das Monitoring dementsprechend auf dem FPGA
aufgebaut. Der Benutzer ist anschließend dafür zuständig, dass die Daten aus den Chips heraus-
gelesen werden. Als Möglichkeiten wurden bisher eine Linux Kommandozeile und eine EPICS
Oberfläche implementiert, mit Hilfe derer man Anweisungen über eine Ethernet-Verbindung an
das optische Netzwerk weitergeben kann. Dort ist dann ein Monitoring-Server in der Lage,
die Signale vom DEMON auszulesen und an den Client zu übermitteln. Hier lassen sich viele
Signale gruppieren um gleichzeitig ausgelesen zu werden, als auch vom Benutzer spezifizierte
Auslese-Intervalle einstellen.
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1 Motivation and Overview

Heavy ion physics, as a branch of modern particle physics aims to discover the principal in-
teracting forces between microparticles, as well as the corresponding elemental particles which
cause them. Thousands of years ago, the ancient Greek philosopher Democritus was occupied
with an interesting question: what are actually the basic components of matter and what kind of
forces keep them together? Since then, no final answer could be given. It seems that the deeper
one can look inside the matter, the more particles and structures can be discovered. During the
last century however, revolutionary breakthroughs in the field of physics have been performed,
which imposed a completely new way of thinking in order to find the answer to the above ques-
tion. In that era of Einstein and many others, the fields of particle and nuclear physics were
reborn.

The main focus lies thereby on the atomic nucleus. The nucleus itself is very hard to examine
in a laboratory, but yet it seems to contain the answer to the above question. In order to gain
a clearer look inside, large energies and expensive instruments are needed. It is known that
the nucleus is composed of smaller particles, the nucleons, however it still remains a puzzle
how their mass is generated and it is uncertain what the complete properties of their interacting
forcefields are. This is currently a highly debated question and the focus of many research
studies throughout the world. A picture showing one nucleon (the proton) from three different
perspectives can be viewed in figure 1.1.

One huge challenge of modern particle physics lies within the fact that the nucleon con-
stituents can never be isolated or observed freely. It can be apprehended as a form of nature’s
law. One part of the nucleon are the three so called valence quarks1 and they seem to be confined

Figure 1.1: The current theory behind the nucleon. Its inner particles are bound with the strong force
(QCD) and can not be isolated or separated without further ado. Sources: Internet (Google images)

1Quarks are elemental particles and can neither be destroyed nor isolated. There are six in total (twelve with
their corresponding anti-particles) and they are the main components of all matter on earth.

1



CHAPTER 1. MOTIVATION AND OVERVIEW

inside it. Since the mass of the three quarks is far below the actual value for the entire nucleon2,
it is believed that many other, virtual particles evolve around them carrying the missing mass in
form of energy. Besides the quarks, there are hence diverse virtual particles being created and
destroyed at the same time, interacting in different ways with the forcefields in this equilibrium,
keeping the net mass of the nucleon at its value.

In general, many different particle species exist. The atomic shell, for instance, contains elec-
trons which belong to the lepton family. Electrons are also responsible for the electric current
and they hold the molecules and atoms in the solid and liquid states together. However, they
possess an anti-matter opponent – the positron (i.e. the anti-electron), which is also a member
of the lepton-family. In fact, every particle of common matter does possess a corresponding
anti-particle. Whenever electron and positron collide, they annihilate each other, creating strong
gamma radiation. This holds for every particle/anti-particle pair. While leptons are usually
rather lightweight, there is the heavier family of hadrons. Hadrons can contain one quark and
one anti-quark, in which case they are called mesons, or they can build up a nucleon or a similar
particle called the baryon/anti-baryon. Baryons contain three valence quarks exactly and anti-
baryons three anti-quarks, in fact all hadrons contain quarks or anti-quarks, whereas leptons do
not. Leptons are already elemental particles. Hadrons are only elemental in the sense that the
quarks they contain (which are the true elemental particles) can not be isolated. Hence hadrons
contain other elemental particles but they themselves behave as if they were elemental, too. The
branch of physics concerned with the properties of hadrons in bound states is called hadron
physics.

In order to study physics at such inordinately low levels as 10−15m and below, an accelerator
facility with a particle detector is necessary. Since nuclei, as well as nucleons, are rather complex
systems composed of many particles accompanied by their interacting forcefields3, accelerating
them near lightspeed and ’smashing’ them against one another can reveal an insight into their
inner structure. Figure 1.2 illustrates such a collision between two heavy ions.

Figure 1.2: A simulation of a central hit between two gold atoms accelerated near lightspeed against
each other. At such high energies, new particles, in form of hadronic resonances and mesons are easily
created according to Einstein’s E = mc2. Source: [Lor08]

2Quark mass is around 5 – 10 MeV, whereas the mass of the entire nucleon lies around 1000 MeV.
3Forcefields can be completely described using interacting particles – the bosons.
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After the collision, the products of the fireball are emitted in all directions in space. Due to
the fact that new particles are created, even completely new particle species or whole particle
jets4 can be formed. In physics, the conservation laws of energy and momentum can never be
violated. This applies even for quanta. Therefore, every particle involved in the collision still
obeys certain laws of physics, and by determining every product after the collision alongside its
physical properties, the structure of the fireball can be analyzed and new theories explaining the
substantial properties of energy and matter tested and verified. Mesons sometimes decay directly
into electron-positron pairs and since the lifespan of a meson is in some cases significantly
smaller than that of the entire fireball, by measuring the di-electron5 energy, the meson mass
inside the fireball can be determined and hence inaccessible information about the evolution of
mass inside dense matter acquired. This is exactly the type of experiment widely applied in
hadron physics.

Although Democritus’ question still remains unanswered, current state of the field neverthe-
less provides extremely good estimates and highly accurate calculations and explanations about
the governing principles of the universe. By studying the smallest, even such objects like super-
novae, neutron-stars and solar radiation can be explained6.

1.1 The HADES Detector System

The GSI Helmholtzzentrum [GSI] is a center for heavy ion research located in Darmstadt near
Frankfurt, Germany. Currently, the accelerator complex is being used for various experiments
regarding nuclear and atomic physics. The complete center consists of a linear accelerator, a
synchrotron, an ion storage ring, several detectors and a facility for tumor therapy with high-
energetic carbon ions [GSIb]. Currently, the entire research establishment is being upgraded.
First experiments are planned for the year 2015 and the new accelerator facility, which runs
under the name FAIR (Facility for Antiproton and Ion Research) [GSIc], will provide an oppor-
tunity for more sophisticated experiments involving higher energies, anti-matter and ion beams
of much higher quality. In total, the expenditure amounts to 1.2 billion euro. An illustration of
the current facility and the upgrade can be seen in figure 1.3.

One of the several particle detectors on the complex is the HADES (High Acceptance Di-
Electron Spectrometer) detector system [GSId, HAD09], which is tailor made for the detection
of rare events producing electron-positron pairs. Di-electrons are excellent probes for the anal-
ysis of nuclear matter. They themselves do not interact strongly with nuclear matter (since they
do not contain any quarks) and are due to their low mass ideally suited for collision experiments
at lower energies of several GeV per nucleon. In such collisions, new vector-mesons can be cre-
ated (for example the ρ-meson), which can immediately decay into di-electrons. By measuring
the di-electron momenta, the properties of the meson inside the fireball can be understood, as
well as additional fireball properties. By doing so, HADES experiments can reveal novel aspects

4In this case the impact energy is converted into mass and numerous new particles conserving the laws of physics
re-emerge.

5Di-electrons denote the electron-positron pairs, since electron and positron are the same particle, only with the
opposite charge (positron = anti-electron).

6Such field of study is referred to as ’nuclear astrophysics’
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Figure 1.3: The entire GSI research facility. The upcoming FAIR complex is depicted in red.
Source: [GSI]

to nuclear matter and energy/mass spectra which are normally confined within. In contrast to
traditional scattering experiments, di-electrons allow particle analysis from the inside of nuclear
matter.

Measuring di-electrons originating from (and indicating) special events like vector-meson
decays has always been a great challenge. First of all, the branching ratio of such a decay is
extremely low making it especially hard to emerge from a collision7, and second, the processes
in a collider are always accompanied by background radiation which can mask the good di-
electrons indicating real ρ decays with bad pairs originating from ordinary background radiation.
Furthermore, di-electrons are extremely lightweight, hence all detector parts must be designed as
permeable as possible, not to disturb their path before measurement8. Background radiation can
also induce conversion processes in the detector parts causing more unwanted effects. Therefore,
all inner HADES components were designed extremely lightweight and thin in order to minimize
the undesired effects [Lan08].

Behind a big name, there is always a great collaboration. Over one hundred researchers
throughout Europe are involved in the HADES project. A map of all the contributing countries
is shown in figure 1.4. Experiments have been conducted since 2002 and its original purpose was
to clarify the DLS-puzzle from the DLS experiment at BEVALAC in Berkley, USA. The puzzle
has been solved [Pac08a] and the discrepancy between theoretical calculations and experimental
results confirmed. Yet, the deviance can not be explained by any theoretic model and additional

7Only every 10 000-th ρ-meson actually decays directly into a di-electron. The process rather prefers a conver-
sion into heavier particles like the pions or pure gamma radiation.

8While electrons move through matter at ultra-relativistic speed, they get slowed down and emit bremsstrahlung.
Bremsstrahlung creates secondary electrons which interfere with particle measurements. In the Pre-Shower sub-
detector however, this effect is actually favored to detect electrons (see section 3.3.2).
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Figure 1.4: The HADES detector in exploded view, showing the numerous sub-detectors in layers. The
collaboration involves 9 countries and 17 institutions. Source: [GSId]

research in this field is still required.
The HADES detector system is designed specifically for fixed-target9 experiments. Interest-

ing events can be observed only in one hemisphere in the lab frame, which is ideal for detecting
di-electrons with large opening angle, usually originating from vector mesons with large mass.
The detector geometry can be viewed in figure 1.4. While the azimuthal angles are almost com-
pletely covered due to the six trapezoidal sectors spreading in every direction in space, the polar
angles cover 18 - 85 deg. Each of the six sectors is built alike and the detector is perfectly six-
fold symmetric. Due to the large opening angles, the geometric acceptance is very high allowing
detection of approx. 40 % of all di-electrons. All the different layers from figure 1.4 consist of
different sub-detectors (TOF, TOFino, Pre-Shower, RICH and MDCs). As already mentioned,
many different particles are created during the experimental runs, therefore distinct detectors
have been designed to analyze each significant particle group. The RICH- [Zei99] and the Pre-
Shower-detector [Bal04] are used for di-electron detection, while serving at the same time as
triggers for rare events. MDCs [Mun04] together with the toroidal supra-conducting magnet
can identify charged particle tracks alongside their momenta. The TOF [Ago02] and TOFino
allow particle time of flight measurements and contribute to additional particle identification. In
order to collect sound statistics, not all events can be measured and recorded. Due to the large
data loads, a triggering system [Tra00] has been developed to allow an online discrimination
of events and storing only the wanted, rare ones for further analysis. As mentioned above, the
generation of hadron mass is currently one of the most interesting problems in particle physics.
After the FAIR upgrade, HADES should be able to collect better statistics on larger systems (e.g.

9In fixed-target experiments, and in contrast to collider experiments, the ion beam is accelerated whereas the
target atoms remain still. This sort of experiment produces particles only in forward direction and requires higher
energies than collider experiments.

5



1.2. MONITORING FACILITY CHAPTER 1. MOTIVATION AND OVERVIEW

Au → Au with 10 GeV) and acquire more information to understand mechanisms responsible
for hadron interactions, behavior and structure.

1.2 Monitoring Facility

As already mentioned, the HADES detector system is currently being redesigned due to the
FAIR upgrade [Fro09]. As will be explained in the subsequent chapter, the sub-detectors now
acquire data over FPGA-chips and then forward it over a fast optical network for trigger-analysis.
If an interesting event has occurred, the data from all sub-detectors is stored for further evalua-
tion. Thus the data acquisition electronics need to be highly flexible and have to rest upon one
unified architecture for all sub-detectors. To this effect, a general-purpose readout board, the
TRB [Fro08], has been manufactured. Moreover a centralized bus system, the TRBnet [Mic08],
has been developed. Although the detector is composed of many different parts, in this way, the
data acquisition relies on the same architecture.

Apart from that, there is a huge space limitation inside the MDC detector. The front-end
components once mounted can not be accessed anymore. Moreover, the chips and the electronics
are exposed to tremendous radiation during the experiments. The radiation however does not
seem to have a threatening impact on the data. In worst case, a bit is flipped in an SRAM cell10

and the data has to be discarded or the FPGA11 reprogrammed. The bus system is conceived to
avoid deadlocks, however if something does go wrong, it is of great importance to analyze the
reason(s). For this occasion and to generate new, interesting statistics, as well as to keep an eye
on all devices, a monitoring system needs to be developed.

1.2.1 Overview of the Work

As part of this thesis, a general-purpose, scalable monitoring system has been developed to
support HADES and future FAIR experiments. The system draws on the FPGA-driven bus
architecture and can therefore be utilized on any FPGA chip. It has been designed strongly
resource-friendly and is considered as lightweight. It allows critical signal monitoring (like
temperature, voltages, busy times and similar) as well as statistical conception and detector
analysis. It can be used for example as a logic analyzer providing real-time hardware signals, or
for various testing purposes.

In the next chapter the bus architecture and the triggering system will be introduced in more
detail, as well as the hardware they reside on. Afterwards, in chapter 3, the requirements and the
design of the monitoring system will be elaborated after an in-depth detector analysis. After that,
in chapter 4, an implementation based on VHDL and C will be explained, leaning on the EPICS
API. Finally, chapter 5 presents a summary and an evaluation of the entire work, accompanied
by future plans and an outlook.

10Reconfigurable FPGA chips usually use Static RAM cells (SRAMs) to store their current configuration and
program.

11The FPGA will be explained in the following chapter.
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2 Introduction

The HADES system combines numerous different components with modern and most demand-
ing technology. This chapter introduces the readout operation and explains some basic data
acquisition principles, as well as the internal optical network.

2.1 The HADES Data Acquisition Scheme

The HADES detector system is responsible for detailed hadron and lepton analysis. Hardly
approachable states of nuclear matter need to be analyzed on the basis of vector meson decays
in medium. Vector meson events, again, should be evaluated on the basis of their di-electron
decays. Additionally, all particles resulting from such events need to be identified. However, not
all events are interesting. Only central collisions are likely to produce vector mesons, hence the
data load can be significantly reduced by examining only the central hits1. If a hit was central
enough, the data needs to be checked once more whether an actual di-electron occurrence could
be detected. Therefore, a two-level triggering system has been developed to decide which of the
millions events per second are interesting and which not.

The great challenge of HADES experiments lies in the incredibly low decay rate of vector
mesons into di-electrons (the di-electron branching ratio). It is of size 10−4 – 10−5, meaning
that every 10 000 – 100 000 central collisions, one desired vector meson decays directly into
a di-electron. Therefore the online trigger analysis needs to be performed with high rates, i.e.
every of the 1 000 000 events per second in which the beam reacts with the target needs to be
examined carefully.

According to [Pal08], the data acquisition is performed within five major steps, as summa-
rized in table 2.1. The sub-detectors are applying certain technologies allowing them to detect
specific particles flying through. These technologies are referred to as front-end electronics

Step Data Acquisition Task
1 Front-end electronics
2 Readout electronics
3 Trigger distribution and data flow
4 Central-Trigger System
5 Event building and mass storage

Table 2.1: The HADES data acquisition procedure can be arranged into these steps.

1Besides the ’good’ hits, some minimum bias events are also recorded to support more precise analysis.
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(FEE for short) and strongly vary from system to system. With FEE, the detectors acquire event
data and send it to the next readout node. Afterwards, the readout electronics prepare the data
for transport through the network system. In step 3, data is forwarded through the bus network2

and made available for trigger analysis. A central-triggering system (CTS) is then responsible
for quick online decisions, whether the data contains the desired di-electrons, or not. If a trigger
does occur, i.e. the data contains certain characteristics and exhibits unusual patterns indicating
possible di-electron presence, then the entire event requires an in-depth analysis plus reconstruc-
tion and has to be stored. Therefore, in the last step, the event-builder assembles coherent data
packets coming from all different sub-systems and records them on the external tape. A data
flow illustration is depicted in figure 2.1.

Figure 2.1: The basic event data flow. While waiting for trigger decisions, the data is buffered in different
pipes.

2.2 Overview of the Electronics

An in-depth analysis on the operating method of all sub-detectors currently in use, together with
their FEE, readout systems and properties will be presented in the subsequent chapter. However,
this section will briefly outline that subject-matter and focus more on the optical network.

One major step during the HADES upgrade was to unify all data acquisition systems in one
common bus. Every sub-detector needs to support this bus system, regardless of the technology
it employs. Since the readout method strongly depends on the sub-detector it resides on, every
detector must use a specialized board for data digitization and data distribution over the bus
system3. This board has the purpose to prepare the data in the bus-specific format and rests upon
a universal architecture presented in the remaining sections.

2.2.1 The TRB

Data acquisition at HADES is accomplished using general purpose Trigger and Readout Boards
(TRBs). These boards force different detectors to use one common bus system named TRBnet.
Since many different teams are developing the sub-detectors, it is of great importance to connect
all of them with a unified data bus. Every detector applies rather complicated technology that

2The bus network is called TRBnet, see section 2.2.2
3In some cases, the conversion is even performed directly on the front-ends.
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Figure 2.2: The general purpose trigger and readout board model ’v2b’. The TRB is the key element of
data acquisition at HADES. Source: [Fro08]

is hard to comprehend especially for other teams, and therefore using a common bus allows
everyone, particularly future developers, to acquire data without possessing much knowledge
about the actual technology behind it.

Every network node inside the TRBnet consists of either one TRB containing eventually ad-
ditional add-on boards directly attached to it, or an optical FEE driver board. The TRB opens up
various possibilities. It has a highly generic design applying reconfigurable logic. The current
design is marked under the version ’v2c’ and (as shown in figure 2.2) contains diverse compo-
nents summarized in table 2.2.

Component Description
FPGA Xilinx Virtex 4 family - LX40 (XC4VLX-10FF1148).
CPU ETRAX FS with Linux 2.6 kernel and 128 MB RAM.

Optical Link Transceiver Internal data flow inside the TRBnet with 2 Gbit/s.
Ethernet Connector 100 Mbit external network connectivity.

DSP 500 MHz TigerSharc digital signal processor.
HPTDC Four multi-hit time-to-digital converters.

LVDS/TTL Connectors Ultra fast connectors for add-on boards (15 Gbit/s bandwidth).

Table 2.2: The current TRB ’v2c’ components.
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Short Component Description

• FPGA. The electronics throughout the detector often utilize FPGA chips for data acquisi-
tion and slow control. A good explanation on these chips can be found in [Sik01, Okl08a,
Tin00]. In short, an FPGA (Field Programmable Gate Array) represents reconfigurable
logic cells. Initially, it possesses a fixed number of these cells that can be (re)configured
to realize Boolean functions [BV05] and hence allow digital logic circuits. Moreover, the
wiring between the cells is also reconfigurable, normally using SRAM cells. The logic
cells are mostly implemented as Look-up Tables (see [BV05] for details). This kind of
electronics is extremely versatile, as it allows implementations of arbitrary digital com-
ponents, from simple ROMs and FIFO modules up to microcontrollers, processing units,
and much more. They can be easily programmed with hardware description languages,
like VHDL [BV05] and Verilog4.

• HPTDC. TDCs (Time-to-Digital Converters) play an essential role in every particle de-
tector electronics, as they convert time intervals triggered by analog inputs with a certain
resolution into digital signals ready for processing. They are similar to ADCs (analog-
to-digital converters), only they do not convert the analog signal directly, but they count
the time between two successive analog signals above a certain threshold and digitize
this value afterwards. The resolution is very high and usually below 1 ns allowing time-
sensitive event tracking. In HADES experiments, a particular TDC module, the High
Performance general purpose Time to Digital Converter from CERN [Chr04] is being
used.

• LVDS. Low-Voltage Differential Signaling is an IEEE standard since the year 1996 (IEEE
std 1596.3-1996). It enables extremely high transmission speeds over inexpensive twisted-
pair copper cables with very low power consumption. A more detailed and comprehensive
description can be found in [Tex02].

TRB Architecture

The FPGA is wired directly to the ETRAX CPU allowing user-space control over a Linux oper-
ating system. While the powerful Xilinx Virtex 4 FPGA provides main calculations, some slow
control data and monitoring signals can be utilized over the CPU interface. The complete TRB
architecture can be observed in figure 2.3.

One major advantage of the TRBnet is the internal network communication based on fast
optical links. The optical links have already contributed to saving a great amount of space within
the detector, since they consist of plane wires with negligible small diameter, as shown in figure
2.4. Moreover, the noise in the communication channels has been significantly reduced, but the
most important improvement is the 2 Gbit/s network bandwidth using the Texas Instruments
TLK2501 transceiver.

4Both languages are IEEE standards. The first VHDL version is noted under IEEE 1076, while shortly after that,
another version as IEEE 1164 has been released [BV05]. Verilog is known as IEEE 1364.
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Figure 2.3: The entire TRB architecture. The
ETRAX CPU provides direct access to the FPGA
over two 16 bit lines. Source: [Fro08]

Figure 2.4: Optical link connector with its cables.
Source: [Mic09]

The HPTDCs can be used for immediate signal digitization, allowing the TRB to function
directly as a detector readout node. This is currently the case with the TOFino and will also be
performed in near future with the next upcoming sub-detector, Resistive Plate Chambers (RPC).
The DSP is intended to reduce the FPGA workload in future experiments.

Although the TRB can be used as a stand-alone data acquisition component, it is also equipped
with ultra fast LVDS connectors allowing additional boards to be attached to it. Many unique
boards have been designed to support the new readout system. They serve mainly as bridges
from the FEE to the TRBnet. While the FEE provide core data signals, the readout electronics
acquire them and either forward the data directly through optical links to the next hub, or they
send the data over the LVDS lines to the attached TRB for transmission. During this process, the
data is converted into a TRBnet specific format5, as explained later in section 2.2.2. In this way,
a clear separation between the detector technology and the bus system could be accomplished.
More technical details on this issue are presented in chapter 3.

The optical link bandwidth amounts to 2 Gbit/s. The FPGA is running at 100 MHz and hence
can forward the 16 bit wide data stream with 1.6 Gbit/s maximum. However, together with the
entire TRBnet protocol, the total bandwidth averages around 1.2 Gbit/s, which is sufficient for
future experiments [Mic08].

2.2.2 TRBnet Details and Triggering

One basic principle of the TRBnet bus system is that it transmits the data over four prioritized
channels, as listed in table 2.3. The first level trigger is fired whenever the sub-detectors show
high particle-activity. Since this is the most demanding part of the system bus, no other data but
triggers are distributed over the first channel6. High particle quantity implies a central hit and
therefore the data needs to be checked for rare events7.

5Some detectors, like MDC and RICH apply many data channels. In this case the data is converted directly on
the FEE into the TRBnet format. The readout nodes only merge the numerous data channels, afterwards.

6The detector busy-activity can be directly ascertained here.
7Interesting events are most likely occurring in central hits, similar to those shown in figure 1.2
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Channel Data Priority
1 Level one trigger ****
2 Level two trigger ***
3 Miscellaneous **
4 Slow control and Monitoring *

Table 2.3: TRBnet channel list. The first channel has top priority.

As mentioned in the previous chapter, HADES uses electron-positron pairs as probes for
special events. They can be detected with the RICH- and the Pre-Shower-detector, therefore
their data, together with TOF data, is an essential part of the second level trigger. This trigger
inspects the data for specific patterns indicating di-electrons and decides if the event should be
discarded or not.

Besides the TRB and the detector-specific readout boards, the network also contains hubs.
These are yet other specific boards connecting up to 20 network nodes together. They are a
substantial part of TRBnet and have their logic realized on two Lattice LFSCM25 FPGA chips
per board, on top of which a TRB resides as an add-on for more controllability. Whereas the
hubs provide constant data flow, there are some dedicated TRBs in the network performing all
the calculations and trigger analysis. These particular boards with specific algorithms constitute
the CTS and other data processing nodes (like the image processing unit and the matching unit,
see section 3.3.3). All the network nodes are organized in a star-shaped arrangement, keeping
the latency at minimum. The simplified network architecture is presented in figure 2.5.

Another aspect of TRBnet is its robustness and deadlock-freedom. The hardware is exposed
to tremendous radiation and high temperatures, thus it tends to malfunction. However, if a TRB
becomes inoperative, it should under no circumstances block the rest of the network. Therefore,
the TRBnet has been designed to continue operating even if some vital parts are failing. More
detailed explanations around TRBnet can be found in [Mic08].

Figure 2.5: The abstract star-like architecture of TRBnet.
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TRBnet Data Transport

The TRBnet bus system is based on the simplified Open Systems Interconnection reference
model [Mic08]. FPGAs on every TRB in the network implement four layers of data transporta-
tion, as listed in table 2.4.

Layer Data-packet
Application layer Raw data ready for transport
Transportation Layer Header, data and a termination tag
Link layer Augmented data, plus additional end-of-buffer tags
Media interface The augmented data from previous layers in 16 bit format

Table 2.4: TRBnet transportation layers according to the OSI layer model. Transmitter packs the data
downwards, while the receiver unpacks it upwards through the layers.

The top layer provides the raw data, in other words, one or more applications residing on
the FPGA may process the data and execute certain algorithms. When finished, they have to
forward it for transport to the next network node. The raw data gets a header and a termination-
tag in the transportation layer, so that the low-level logic can resolve when data starts and when
it ends. Afterwards, in the link layer, the data is prepared for transport on the medium. There,
it is marked with additional output buffer tags and moved into the buffers. Afterwards, in the
lowest layer, it is finally sent through the optical link in 16 bit format to the next TRB or hub.

Figure 2.6: Data transportation through the OSI layer of TRBnet.
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On the receiver side, the entire process is then reversed in order to obtain the data back. In figure
2.6, the data flow within the OSI-layers from one TRB to another is depicted. Every data packet
contains 80 bits in TRBnet format, 64 of which are the raw data and altogether transmitted in
five 16 bit words. An CRC checksum is also transmitted providing error detection. Figure 2.7
shows a scheme of the current network setup in combination with the data acquisition routines.

Figure 2.7: The entire scheme of the current TRBnet setup. The detector front-ends acquire data, which
is transformed into TRBnet specific format and forwarded over the optical network hubs to the right hand-
side for processing. Over Ethernet, the event data can be stored and the acquisition process controlled.

2.3 Read and Write Access

In order to communicate with the hardware, the TRBnet RegIO module can be used on any
FPGA chip. It is able to interpret certain TRBnet datawords as READ and WRIT E signals. Its
purpose is, as the name implies, to allow register reads and writes (hence input and output).
Every TRBnet node contains a unique address (the ID). Each ID is determined by the DS1820
temperature sensor on the chip and stored in a special register. This register is crucial for internal
communication, however it is by far not the only register on the TRB and other boards. The
RegIO entity can actually read any arbitrary register on the chip. Merely the register address
needs to be provided. The entity moreover supports multiple reads and multiple writes to the
same or consecutive network address(es). In case of a WRIT E signal, the 32 bit data packet
needs also to be given. In figure 2.8 the access to the monitoring system through the RegIO
module is outlined. After decoding the media interface input, the RegIO initiates the READ or
the WRIT E and awaits some handshakes (unknown address, no more data, write acknowledge
and data ready) together with the response data. If the read takes too long, a timeout signal is
released and the operation canceled.
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Figure 2.8: The monitoring facility can be read out exclusively through the RegIO module. The RegIO
handles incoming read and write signals and forwards them straight to the monitoring system, as well as
extract the monitoring signals.

2.4 Room for Monitoring

The purpose of the monitoring system is to monitor the state of the detector electronics and
display it on the screen for easier evaluation and futher analysis. Therefore, in order to obtain
the most information, it should be embedded into the hardware as deep as possible. The detector
front-ends are designed very differently. An implementation of the monitoring system for the
front-ends would require different designs to suit each sub-detector. Since this approach is
neither very flexible nor future-friendly, a more generic solution realized on the detector FPGA
chips is favored. Since all detector data passes through the readout chips, the monitoring can
be implemented there. Such a design is at the same time a new challenge, since the monitoring
facility would have to be as generic and abstract as possible. A large variety of configurations
is required to adapt the system to any arbitrary readout node and besides that, the FPGAs are
already heavily loaded with algorithms leaving only little room for monitoring. Therefore an
extensive analysis of every current readout system and all the sub-detectors will follow in the
next chapter.

Other than that, TRBnet is still in development. However a large library of pre-designed
entities for the FPGA chips has already been made available in VHDL. Applications can be
loaded into TRBs, trigger simulated and some user commands executed via the Linux system
on the ETRAX chip, however, the most interesting component for this thesis is the RegIO. The
response can be easily encoded into the low-level media interface format and thus distributed
throughout TRBnet directly. The RegIO is tailor made for acquiring monitoring signals from
readout electronics and will be embedded into the solution in chapter 4.
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3 Analysis and Design

This chapter is partitioned into two parts. The first part contains an in-depth sub-detector analysis
and elaborates all the requirements on the new monitoring system. The second part introduces
in section 3.6 an adaptive design fulfilling all of the presented constraints.

The HADES project currently applies eight distinct detector systems using approx. 80 000
data channels [Lor08, Pal08]. The first HADES experiment scheduled for the year 2010 is the
gold on gold fixed target experiment. The experiment aims, among others, to demonstrate the
effectiveness of the new readout system before the completion of the FAIR extension. The gold-
ion beam can be maintained for several weeks, during which around 3 billion events can be col-
lected. The vector meson decay rate into di-electrons is very sparse and, due to the background
radiation, from all of these candidates, only maximum 100 000 can be used for in-medium
hadron analysis. Therefore, in order to analyze such huge data loads appropriately, the trigger
has to work with a frequency of 20–100 kHz minimum. After being upgraded, the TRBnet
should be capable of forwarding the data stream at that speed [Mic08]. However, while waiting
for trigger decisions with latencies of several events, the data needs to be buffered in the front
ends and readout modules first. This is achieved through a trigger pipe system (see figure 3.1).
Data is buffered in different pipes awaiting trigger decisions [Tra01]. Besides the meaningful
events containing di-electrons, a minor fraction of minimum bias events needs to be included
into the calculations as well, supplying comprehensive information about the detector.

Figure 3.1: The most basic data flow scheme through the HADES pipe system. The level 3 trigger is
currently in development.

The distribution of data has been briefly discussed in the previous chapter. In order to analyze
deeper prerequisites on the monitoring system, a closer look on the detector electronics will be
provided in this section. Actually, nearly all detectors follow the same scheme illustrated in fig-
ure 3.2. The front-ends are gathering raw analog signals in every HADES sector and forwarding
it to the add-on boards and TRBs, which digitize the data and send it through TRBnet.
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Figure 3.2: The FEE-to-TRBnet bridge. On the leftmost side are the detector planes depicted acquiring
event data. The data is read out in the readout nodes consisting of TRBs with detector-specific add-on
boards.

3.1 Basic Specifications

Since the monitoring system needs to fit in with the current HADES architecture, it has to be
versatile and extensible, as the TRBnet itself. It should be designed to support all future ex-
periments, regardless of which sub-detectors or which data they use. Therefore it needs to be
developed directly on the FPGA chips of the readout electronics, FEE or TRBs. The FPGAs
are already heavily loaded, so the monitoring system additionally needs to be very simplistic,
keeping the resource consumption at minimum.

A high degree of customization is necessary in order to adapt itself to the many detector-
systems and a large variety of configuration modes needs to be present. The monitoring facility
additionally has to be data independent, in order to support all the future signals. Finally, it has
to provide real-time access to the monitoring data and allow online configurability. Table B.1
summarizes these basic requirements.

Requirement Description
Simplicity Maximum efficiency at low resource consumption
Versatility High degree of customization and data independence
Real-time access Fast access and on-the-fly configuration
Extensibility Support for future experiments

Table 3.1: A summary of basic requirements on the monitoring system.

3.2 Level 1 Trigger Electronics

The first level trigger plays the key role during data acquisition. It is used to downscale the event
rate by a factor of 10 and reduce the data load significantly. However, it needs to be calculated
extremely fast for every of the 1 000 000 events per second.
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Its purpose is to check whether each collision is central enough to produce vector mesons.
This can be done by simply counting the particle multiplicity in TOF and TOFino detectors.
Central collisions, similar to those from figure 1.2, produce many scattering particles, hence by
determining the charge in TOF and TOFino for each event and comparing it to a threshold value,
the first level trigger can be calculated.

Prior to that, the start of an event needs to be determined. For this purpose the Start/Veto
detector system has been designed. Basically, it registers a collision between the beam and the
target and provides thereby the start-signal for every sub-detector.

3.2.1 The Start/Veto Detector

The Start and Veto detectors regulate the start of the data acquisition operation [Kri08]. They are
positioned in the center of HADES and a beam is set up to move through both of them, according
to figure 3.3. Both are identical and consist of polycrystalline CVD1-diamonds, with dimensions
of 25×15×0.1 mm3 (see figure 3.4). They are designed with good radiation hardness and can
be operated at room temperature [HAD09].

If a particle is registered in the Start detector, and if none in the Veto detector is present
afterwards, it must have been involved in a collision with the target on its way. Therefore, a
hit has occurred and the data-taking can begin. They operate at the efficiency of 98.5 % with a
timing resolution of around 29.2 ps [HAD09]. Altogether, event rates of 107/s can be detected
[GSIa]. In this special case, a single TRB is responsible for readout and slow control, without
any add-ons.

Figure 3.3: The identical Start and Veto detectors are placed in the
middle of the HADES frame. If a particle disappears on its way, a
collision with the target is most likely the reason, hence they determine
the start of data acquisition. Source: [Lor08]

Figure 3.4: The Start/Veto
detector in real life. Their
height amounts to only
2.5. cm. Source: [Kri08]

1CVD = Chemical Vapor Deposition
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3.2.2 The TOF/TOFino System

After an event-start could be determined, the particle multiplicity needs to be checked. The best
way to do this is to consult the Time Of Flight detectors, the TOF and TOFino. They are able
to detect nearly every charged particle flying through. Moreover, they even contribute to some
particle identification through energy losses in their plates. Since they are scintillators, they
absorb particle energy and need to be positioned on the outermost shell of the HADES detector.

Figure 3.5: The Time Of Flight detector. It
constitutes the outer most shell of HADES.
Source: [Kri08]

Figure 3.6: The trapezoidal TOFino paddles lean
directly on the Pre-Shower. Source: [HAD09]

Technical Details. The TOF and the TOFino consist of BC408 plastic scintillator rods emitting
light whenever charged particles fly through. This light induces secondary electrons in the Photo
Multiplier Tubes (PMTs), which are then amplified and measured, providing good analog signals
which reflect particle energy and allow timing measurements over the HPTDCs [Pal08, Ago02,
HAD09]. The TOFino covers the smaller angles of 18 – 45 deg. and is supposed to register
faster, more energetic particles usually emerging in lower angles of a fixed-target collision. Each
of the six sectors contains four scintillator paddles providing moderate timing resolutions 2 of
400 ps. This value will be corrected in the future, as the TOFino is intended to be replaced by
the Resistive Plate Chambers with a much finer timing resolution below 100 ps [Bel09]. The
TOFino paddles are shown in figure 3.6 and are connected directly to the Pre-Shower. In this
way, a quick lepton-hadron discrimination can be achieved. The TOF covers angles from 44 –
88 deg. and contains 384 scintillator rods in total. A picture of TOF is shown in figure 3.5. Each
of the eight plates per sector contains eight scintillator rods, which can reach a timing resolution
of less than 150 ps. The rods have variable size, increasing with the angle, from 20× 20 mm2

diameter and 1 m length up to 30×30 mm2 and 2 m. This was necessary to keep the double-hit
rate below 20% and minimize particle loss3.

2The TOFino alone can not be used for proper identification, but its data combined with the Pre-Shower detector
achieves the desired results.

3This reference value, found in [Lan08], corresponds to Au → Au at 2 GeV.
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The Readout. The TOF readout operation is performed using a TRB with the TOF add-on board
(see figure 3.8). The add-on receives 128 TOF signals coming directly from the PMTs and
reads them out with a time over threshold method [Pal08]. Additionally, NINO ASIC modules
[Ang04] from CERN are used together with several amplifiers and discriminators to correct
the signals and forward them to the TRB HPTDCs, where they are digitalized and packed into
TRBnet format. The data can then be used for the CTS and for particle identification. The
scheme from figure 3.7 sums up this procedure. The TOFino will be replaced and possesses an
outdated readout mechanism.

Figure 3.7: The TOF add-on operating scheme. TOF FEE pro-
vide the raw analog data on the left-hand side, which is for-
warded to the TRB HPTDCs for digitization with time over
threshold method. Source: [Pal08]

Figure 3.8: A photo of the TOF
add-on board. Source: [Mic09]

3.2.3 Multiplicity Triggering

The main purpose of the CTS is to analyze TOF/TOFino trigger data [Fro08]. Simply all data
from TOF and TOFino is gathered and compared to a certain threshold value. If the value is
greater than the threshold, a trigger is released. As the decision needs to be generated very fast,
a specific TRB with a trigger add-on board is analyzing the TOF/TOFino data online. The board
is a part of the CTS and releases the trigger if the detectors show high particle activity. The
TRBnet latency is very low (around 2-3 microseconds) [Mic08] and the board operates very
fast, hence the trigger decisions can be created within few microseconds [Pal08].

3.3 Level 2 Trigger

If a large particle yield was present in the first step, a central hit has occurred. Therefore,
additional sub-detectors distinguishing electron-positron pairs from other particles are necessary.
The data awaits the confirmation in the level 1 pipe, but technically it can also be forwarded to
the event builder and analyzed offline. This step will be committed in the future, the current
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setup however needs to provide the second level trigger online. For this purpose, the CTS is
once more needed, together with some additional data processing nodes.

3.3.1 The RICH Detector

The Ring Imaging CHerenkov detector [Zei99] is designed particularly for di-electron detection
and is ’blind’ for hadrons and other particles. It is a large optical device with many radiation-
sensitive CsI photocathodes detecting Cherenkov radiation (see figure 3.9).

Figure 3.9: A cross-section through the RICH detector. The cone-shaped electron trail (light-blue) is
reflected and focused into a circle on the photocathode-plain (green). Source: [Pac08b]

Technical Details. As it’s name implies, the RICH uses the Cherenkov effect [Lan84] and is
capable of detecting merely electrons and positrons [HAD09]. These very light particles are
also the fastest in the HADES experiments. Therefore they leave a cone-shaped electromagnetic
trail in the RICH gas-chamber, whereas all other, slower particles do not. The gas chamber
is filled with C4F10 gas that alters the speed of light inside it below the speed of di-electrons
passing through. Therefore, the Cherenkov radiation can be emitted, which is reflected by the
ultra-violet mirror. The mirror has 1.45 m radius and is designed in a special way, so that it re-
flects the cone-shaped trail back into a region of constant radius producing a circle contour. The
reflection thus forms a circle due to the spherical mirror shape, which can be detected using CsI
photocathode pads (see figure 3.9). Hence, whenever circle-like shapes are present, with very
high probability they are caused by electrons or positrons. Additionally, at HADES experiments
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all circles are of same size allowing perfect instrument calibration to support high resolutions.
To achieve good results, 4712 pads per sector need to be read out, producing 28 272 data chan-
nels in total.

Figure 3.10: The RICH data acquisition layout. Recently,
some changes have been made. The TRB add-on is a standard
hub, which forwards the data over its optical links to TRBnet.
Source: [Tra07]

Figure 3.11: A photo of an
ADCM attached to a backplane.
Source: [Mic09]

Readout. The front-ends are concerned with the acquisition and correction of photocathode sig-
nals [Boh99, Boh00]. The detector implements several distinct modules specifically designed to
support the unusual geometry and the large number of channels. The adjusted readout electron-
ics is connected to the FEE over five different backplanes [Pal08] (see figure 3.10). The RICH
modules are then read out using customized ADC modules (ADCMs) attached to the backplanes.

Figure 3.12: The RICH ADCM architecture. Source: [Pal08]
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There are five ADCMs per sector, each responsible for 960 FEE channels making RICH the sec-
ond most complex detector at HADES. The ADCM on its own is a complex system containing
a Lattice FPGA, a RISC microcontroller, ADCs and an optical link (see figure 3.11). It serves at
the same time as a bridge between the FEE and the TRBnet, implementing the TRBnet protocol
and forwarding the data to hubs. The complete ADCM architecture is shown in figure 3.12.

3.3.2 The Pre-Shower Detector

The Pre-Shower sub-detector system [Bal04, HAD09] is used for electron identification in lower
angles between 18 and 45 deg. At such low angles TOFino alone does not suffice since particle
velocities are nearly the same for leptons and hadrons. Therefore, another method of discrimi-
nation using the Pre-Shower is necessary.

Technical Details. The Pre-Shower contains three chambers filled with a mixture of argon
and isobutane gas [Kri08]. The chambers contain wire-plains which can detect electromag-
netic showers. The showers come from 1 cm wide lead-plates between the chambers. The first
chamber is not exposed to any showers and detects merely the charge from the particle flying
through. When an electron reaches the first lead plate, it starts emitting strong radiation in form
of bremsstrahlung. Hadrons, on the other hand, do not. The radiation creates new electrons in
forward direction, reaching the second lead plate, where the effect is intensified and recorded
in the last chamber. Hence, if an electron moved through the Pre-Shower, an increasing current
from the first chamber to the last can be registered, whereas hadrons produce constant current in
all chambers. The effect is illustrated in figure 3.13.

Figure 3.13: The Pre-Shower is able to enhance the charge generated by electrons and positrons fly-
ing through. They emit bremsstrahlung in the lead converters, producing further di-electron pairs. The
electric charge in the chambers therefore gradually increases, whereas for hadrons it remains constant.
Source: [Tra01]
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Readout. The information on chamber status is forwarded straight to the variable gain amplifiers
(VGAs) of the Pre-Shower add-on board [Pal08] (see figure 3.15). The add-on board contains 24
VGAs with four channels each, 12 ADCs (AD9212) and a Lattice LFE2-70E-5F900C FPGA4.
The 10 bit ADCs operate on eight channels each and the FPGA is used for control. The add-on
resides on a TRB, which provides the clock signal and some additional VGA controls over three
DACs5. If the first level trigger arrives, the data from the Pre-Shower is amplified with VGAs,
converted over the ADCs, moved to the TRB and then forwarded to the corresponding level
1 pipe, waiting again for the second trigger. To reduce the data load, only Pre-Shower values
above a certain threshold are being stored. Besides the data-taking mode, the add-on board can
additionally operate in calibration or maintenance mode. The entire procedure is illustrated in
3.14.

Figure 3.14: The Pre-Shower digitization process. The VGAs are con-
trolled over the FPGA. Source: [Pal08]

Figure 3.15: The Pre-
Shower add-on board.
Source: [Mic09]

3.3.3 Di-Electron Pattern Analysis

The most challenging data acquisition step is the determination of electron presence in the RICH,
TOF and Pre-Shower detectors. This process currently needs to be performed online during
measurements, and fast. The solution is to forward the event data through the network to a
designated TRB-cluster operating as the Image Processing Unit (IPU) [Tra00]. There, large

Figure 3.16: The RICH image processing algorithm uses Hough transformation to calculate the center.
Source: [Lan08]

4A new version of the board is being designed, containing three ECP2M50 FPGAs and an optical link.
5DAC = Digital-to-Analog Converter.
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buffers can be filled and image patterns developed. An example of a RICH calculation is shown
in figure 3.16.

After that, the pattern data is forwarded to the Matching Unit (MU), which analyzes data from
all detectors together and decides, for example, if the circle from figure 3.16 correlates with the
TOF and Pre-Shower data, i.e. if the electron presence could be detected in all three detectors.
Only if this is the case, the level 2 trigger signal is released, allowing the data to reach the event-
builder. The entire triggering procedure is summarized in figure 3.18. More information on
triggers can be found in [Tra01, Tra00, Pal08, Fro08].

In future, the level 2 trigger analysis will also be performed offline. For this occasion, FPGA
boards based on ATCA crates [Min08] are being developed, which can simply replace the online
level 2 trigger logic (IPU, MU, etc.) by connecting directly to the optical link network and
storing the level 2 data for offline analysis. A prototype can be seen in figure 3.17.

Figure 3.17: These boards will replace the level 2 trigger in the future. Ten of them will be connected
over the ATCA crate with HADES. Source: [Min08]

Figure 3.18: The HADES triggering procedure starts with the quick analysis of analog data from TOF.
After that, the Pre-Shower and RICH are involved to generate the second level trigger. Source: [Fro08]

25



3.4. PARTICLE IDENTIFICATION CHAPTER 3. ANALYSIS AND DESIGN

3.4 Particle Identification

All of the aforementioned systems are mainly used to generate trigger decisions on when an
event should be stored, but one major detector is responsible for the actual identification of
the numerous collision products - the Multiwired Drift Chambers (MDCs) [Mun04, HAD09].
Together with the data from other detectors (especially TOF), particle analysis can be performed
correctly.

3.4.1 The MDC Detector

Figure 3.19: The HADES tracking system is using MDC planes and a magnet (max. 0.9 T ) for mo-
mentum reconstruction. In order to operate at maximum precision, a calibration needs to be performed
properly. Source: [Lan08]

The basic purpose of the MDC detector is the reconstruction of particle tracks. The MDC
planes are positioned twice in front of a magnet, and twice behind it covering angles of 18 – 85
deg [HAD09]. The magnet is an essential element of any spectrometer. While a charged particle
moves through the magnet, it gets diverted. The curvation of the track depends on how large its
momentum is. Therefore, by detecting the position of the particle before the magnet, and then
again after it, the degree of diversion can be determined and the particle-momentum calculated.
An illustration of this process is outlined in figure 3.19. Based on their momenta, particles can
be identified [GS08, BRR08].

Technical Details. There are four MDC planes with increasing size in every sector (24 MDC
planes in total) and as the name implies, each one is made out of six layers of driftchambers each
containing several layers of wires (see figure 3.20). Moreover, the space around the wires is filled
with a certain gas mixture. If a charged particle flies through, it ionizes the gas molecules, cre-
ating an electric pulse for 1 ns in the wiring. By analyzing all six layers, the position of the
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particle can be specified with a precision of 60 – 100 micrometer in azimuthal and 120 – 200
micrometer in polar direction. The wire layers are arranged in a 20 deg. displacement in such a
way that they enhance the position detection in azimuthal area (i.e. for particles moving in polar
direction).

Figure 3.20: The MDC consists of 24 planes (left picture), each with six differently aligned wire-layers
(right). Source: [Lan08]

Readout. With a contribution of over 27 000 channels, the MDC is the most demanding sub-
detector in the HADES system. For appropriate readout, three different boards have been de-
signed [Pal08, Tar08]:

• Daughter-Board

• Motherboard

• Optical End Point Board (OEPB)

They are all mounted directly on the back side of MDC planes, as shown in figure 3.21. The
daughter-boards are responsible for analog signals only. They acquire the basic states of the
driftwires, amplifying and discriminating the signals at the same time. The motherboards then
digitize the data using TDCs. Several motherboards are connected to an OEPB, which acts as a
driver card. The OEPB contains a Lattice FPGA (ECP2/M20) which is used for readout and slow
control. Once mounted, the MDC FEE boards can not be accessed anymore without demounting
the entire detector. It is therefore very important to keep the system stable as long as possible.
This is the reason why two flash-memories are additionally located on the OEPB. While one
runs a basic firmware allowing the FPGA to return to its basic configuration whenever needed,
the other contains upgradeable firmware versions supplying the OEPB with newer logic.

The design of the OEPB has been a great challenge, as no space was left in the detector.
Therefore, all of the electronics had to be realized on a tiny board of 4× 5 cm2 size [Tar08].
The OEPB uses plastic optical fibers (POFs) for data transmission with 250 Mbit/s over the
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Firecomm Fiber Optical Transceiver (FDL300T) out of the MDC planes [Pal08]. According to
[Pal08], this measure was necessary in order to reduce the electromagnetic noise, the cabling
size and also the costs. There will be around 400 such boards in the field for all 24 MDCs in
total.

On the TRBnet receiver side, a TRB with an MDC add-on awaits the data. The add-on
possesses 32 POF interfaces, 2 regular optical links and 3 FPGAs, capable of reading out two
entire MDC chambers at the same time [Pal08]. This simplified readout scheme is presented in
figure 3.21, and the entire readout electronics in figure 3.22.

Figure 3.21: The MDC readout process involves
three specific boards mounted directly on the de-
tector. Source: [Tar08]

Figure 3.22: The entire MDC readout electronics.
Source: [Tar08]

3.5 Analysis Results

Altogether, HADES utilizes following detectors in the current setup:

• Start/Veto – start of data-taking.
Technology: Beam measurement with CVD diamonds.
Readout: TRB.

• RICH – level 2 trigger, electron momenta.
Technology: Spherical UV mirror, gas chambers and CsI photocathodes.
Readout: ADCM, RICH add-on, TRB.

• Pre-Shower – level 1 trigger, electron detection.
Technology: Charge detection from bremsstrahlung in the scintillator-chambers.
Readout: Shower add-on, TRB.

• TOF/TOFino – level 1 trigger, time measurements.
Technology: Plastic scintillators, photo multiplier tubes.
Readout: TOF add-on, TRB.
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• MDC – particle tracking and momenta.
Technology: Ionization of gas-molecules inducing electric current in the wire-layers.
Readout: Daughter-board, motherboard, OEPB, MDC add-on, TRB.

• RPC – TOFino replacement.
Technology: in development.
Readout: directly through the TRB.

Figure 3.23: An exemplary TRBnet setup showing all the applied electronics. The CTS image in the top
right corner is outdated and will be replaced by a TRB with a triggering add-on. Source: [Pal08]

Figure 3.23 shows the entire readout electronics in practice. The monitoring needs to be
embedded deep into the hardware, FEE near. Since FEEs use analog signals only, to design a
monitoring system for every sub-detector would go beyond the scope of this work and would be
inadequate for future experiments. However there are many FPGAs present, supporting dynamic
logic circuits. Some are available in the readout electronics and some are even part of the FEE.
Therefore, the best suited place for monitoring are the FPGAs and the design will follow an
approach to create a versatile system, ready for use on arbitrary TRBnet FPGA chips. Currently,
the most important monitoring signals have been summarized in table 3.2.

3.6 Monitoring Design

In order to perform all-encompassing device monitoring, three questions regarding the monitor-
ing signals need to be answered: what, where and when? First of all, the signal type needs to be
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Signal Usage
Temperature Every detector, TRB or add-on
Voltage MDC FEE
Channel busy time patterns Hubs, determines the network flow and busy activity
States of finite state machines Any readout-node, including FEE
Current settings (thresholds, etc.) Any detector logic (MDC, Pre-Shower, etc.)
Statistics on which channel fires MDC
Calibration status Every detector requiring calibration
Average data statistics Every detector, MDC especially
Number of token not received MDC

Table 3.2: Currently, the most important monitoring signals are collected in this table. The list is not
complete, as the detector is still in development.

determined by the monitoring system. For this occasion, a large variety of possible signal spec-
ifications needs to exist, distinguishing every signal coming from a different detector. Next, the
signal source needs to be determined. It is very important to know where specifically the signal
emerged from. The answer to this question is provided by the TRBnet itself, as every signal
is always transmitted using the unique id of the network node which sends it. Finally, all data
packets carrying monitoring signals must additionally contain a timestamp. Nearly 500 readout
boards will be used in the experiments for the few detectors, hence the boards operate relatively
independent from each other. Chronological ordering of monitoring signals needs therefore to
be supported in order to avoid the imminent signal chaos (see figure 3.24).

Figure 3.24: The TRBnet contains loads of FPGAs that can not be synchronized below a certain timer
precision. In the example, it is evident that the signals t2 and t6 have different latencies, hence the global
timer provides only a rough timing signal. Monitoring needs to support more accurate timers.
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The monitoring system will be implemented for FPGA electronics directly in the hardware,
embedded as deep in the FEE direction as possible. Therefore, two parts need to be developed
– the first part makes signal monitoring on arbitrary FPGA hardware available, and then the
second part gathers the data using TRBnet and transmits it to the software client outside the
optical network (over Ethernet) for visualization.

It also needs to fit in with the effective readout mechanisms on the chips and to support the
numerous signals (especially ones coming in the future). To achieve this goal, the monitoring
system needs to be blind to any kind of signals coming from the detectors. The hardware part
should simply provide an interface and treat all incoming signals as raw data, as illustrated in
figure 3.25. The user needs to specify what kind of signal on which port is being used and
visualize it in the software manually, later on. The hardware logic, however, does not include
this signal information, e.g. if some busy times are stored in 12bit format, as well as states of a
finite state machine, only monitoring of 12bit signals would be performed and the signals could
not be distinguished by the hardware part. This step is necessary in order to support monitoring
of arbitrary signals and to reduce the data load (since the signal definition does not have to be
included in the package). The signals are only distinguished by their internal address.

Signal visualization can be easily performed using the open-source EPICS software. This step
is explained in section 4.4 extensively.

Figure 3.25: All monitoring signals need to be buffered as raw data. They are acquired over the interface
to the internal hardware.

3.6.1 Signal Properties

As a first step, the monitoring system user needs to specify all signal properties in advance, in
order to setup the system according to the current situation. The system needs to know what kind
of resources it should allocate and how to treat the signals. Therefore, one main specification is
the signal size, i.e. the effective port width of the interface between the monitoring system and
the rest of the FPGA hardware.

Occasionally, statistics on certain detector parts will have to be acquired. In many cases,
this step needs to be performed very fast, with (nearly) every clock cycle. The TRBnet readout
mechanisms are not designed to send read-commands in every cycle. Therefore, in order to
achieve the highest possible frequency and reduce the load on the slow-control channel, the
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monitoring data needs to be buffered. For this occasion, customizable First-In First-Out queues
(FIFOs)6 have been designed, containing the second main specification - the FIFO depth (i.e.
the amount of data packets that can be maximally stored inside).

Now that FIFOs are needed, there is a huge number of different configurations which can be
used. The FIFO approach, although necessary, actually opens up a huge variety of possibilities.
First of all, the FIFOs can be filled only with a certain, predefined frequency. Further, all the
data packs gathered in the same FIFO must contain a timestamp. Since one single detector
applies many different FPGA chips, the timers need to be synchronized. However, this can
not be accomplished with high precision. In figure 3.24, the global SYNC signal has different
latencies for distinct readout nodes, therefore it can not be used for high-precision monitoring.
For that reason, three different timers are present as summarized in table 3.3. Only the global
timer is responsible for FPGA synchronization, while the other two work independently from
one another. To achieve some appropriate chronological ordering with the out-of-sync timers,
the event-number can be ascertained directly from the TRBnet. Every event distributed over the
TRBnet contains a consecutive number (event ID). A part of the ID can be placed in the FIFO
data packet, roughly labeling the signal with its trigger-source. In this way, a fine timer can
distinguish high-frequency signals within a FIFO, while the event-number provides the global
relationship on all independent FPGAs of the same detector system. Therefore, in order to
specify the timer domain of a monitoring signal, a timer-type needs to be declared as well,
which is one of the three timers from table 3.3.

Timer Description
Global timer The rough system time, approximately equal on all boards.
System timer Generates the high precision timings, runs on all boards independently.
Trigger timer The time since the last trigger on a particular board.

Table 3.3: Different timer types can be used to set the appropriate timestamp accuracy.

All the timers simply count the clock-cycles and provide in this way rough or fine signal
timings on all monitoring chips. But the timing specification is not sufficient yet. With the
above method, signals lying on different FPGAs can be chronologically combined together. But
different signals on one particular board may require different timing granularity. They could
contain the same timer type, but because of their varying frequencies, they might need a differing
timer resolution. This property simply denotes from which bit on, the incoming timer signal
should be used as a timestamp (see figure 3.26). While some signals count every cycle, others
might increment their timer only after 32 cycles, for example.

Finally, the sizes of the raw data, timestamp and event-number need to be specified in order
to extract the correct data from all of the datapack-bits later on. Figure 3.26 displays the data
packet splitting and an exemplary timestamp generation inside the FIFO.

6A FIFO stores data inside a certain data structure (usually an array or a list). The first data packet that has been
inserted will be read out first, independent on how many data packets have been written afterwards.
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Figure 3.26: The FIFO data generation – raw data is encapsulated with the timestamp and/or an event ID
inside the FIFO. The timestamp additionally supports different timer resolutions.

3.6.2 Orthogonal Design

Monitoring needs to be performed for every sub-detector, i.e. for many absolutely disparate
systems, each with its own monitoring configuration. Some detectors need to monitor fewer sig-
nals, while others reach easily the space limitations on their FPGA chips. Hence if a monitoring
specification of a particular sub-systems needs to be changed, it should under no circumstances
have impact on the other systems. Monitoring on all chips needs to be performed independently
from each another (since the timestamp and the event ID assure correct chronological ordering).
This calls for an orthogonal design, where a change in one system does not affect the others.

In order to achieve this goal, the monitoring system needs to be customizable on every FPGA
chip. Moreover, it needs to store its current configuration locally on the same chip. Every single
signal definition together with its sizes, timer and frequency should be stored inside a ROM7

module, as presented in figure 3.27, enabling dynamic change-tracking. When the FPGA is
being programmed, it contains a certain monitoring setup. The ROM needs to be generated
automatically containing all the monitoring information from that particular setup.

The monitoring system should depend only on the information in the ROMs. Before the
monitoring starts, the system has to gather all the ROM information and acquire the monitoring
setups for all chips. Later, in the last step, the user can decide which signals in which way need
to be visualized. Following such approach, there is no need for a central database, storing all
monitoring information. The specifications are kept locally on every chip, instead.

3.6.3 Signal Readout

The signals are buffered in the FIFOs on FPGA chips, thus they need to be extracted over the
TRBnet. The user should be able to read out every signal individually. Furthermore, an auto-
matic readout instruction should be implemented to start the signal acquisition in preset time
intervals. The client PC is located outside the TRBnet and the only way to communicate is

7ROM = Read Only Memory
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Figure 3.27: A ROM contains all monitoring configurations of a single FPGA chip. According to section
4.2.1, it is divided into FIFOs and registers.

through the Ethernet interface. Therefore, a TCP/IP server in a Linux shell needs to listen on
one TRB in the network for incoming client calls. The server must decode the client instruction
and connect to the FPGA to release the read or write signal through the entire TRBnet (on the
least significant channel). This can be accomplished over the ETRAX interface located on every
TRB. The server must use the two 16 bit lines from the ETRAX CPU to the FPGA and encode
the request, or decode the response and send it back to the client.

3.6.4 Conclusion

To summarize the results of this chapter, the monitoring facility needs to be split into a simplistic
hardware and a comprehensive software part. The idea is to apply highly configurable FIFOs
to store the raw monitoring signals alongside their timestamps. On the least significant TRBnet
channel, the FIFO contents can be gathered to a particular network node (residing anywhere
inside the TRBnet) and then using a TCP/IP server transmitted to the client(s) outside the optical
network. Figure 3.28 describes the entire monitoring procedure. The design needs strongly to
support orthogonality, hence a ROM on each FPGA is read out first to obtain the current signal
information and reconstruct the entire monitoring setup. Afterwards, the applied data can be
visualized individually by any client.
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Figure 3.28: The Monitoring scheme inside the TRBnet. The monitoring is performed on the FEE,
add-on boards or TRBs. Their data can be read out by a server and forwarded over the Ethernet to the
clients.
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4 Implementation

Under the consideration of all requirements disclosed in the recent chapter, firstly an implemen-
tation of the low-level hardware part will be presented, carried out in the VHDL programming
language. Second, the high-level software counterpart is going to be elaborated, realized in C.
Lastly, a practical use of the EPICS system for signal visualization will be introduced.

4.1 Monitoring System Layout

The monitoring should be not only performed for vital detector signals, but also used for gener-
ation of statistics, especially in terms of detector analysis. Busy times, channel loads, latencies
and states of the system need to be examined properly. Since the applied technology is gradually
evolving, all the experiments could be accompanied by many surprises. The monitoring system
needs to support the constantly changing experimental setups by letting the detector developers
themselves decide which parts need to be monitored. Such adaptive design needs firstly to supply
an interface for the applied monitoring signals, and buffer them in highly customizable storage
cells afterwards. The cells residing on front-ends or readout modules can be addressed and read
out individually or automatically. One TRB in the network needs to implement a TCP/IP server.
The server is responding to commands coming from outside of TRBnet, delivering the neces-
sary monitoring data and controlling the entire procedure at the same time. On the client side,
the user controls the monitoring process either over command line in a Linux shell or by using
the EPICS control system accommodated to the monitoring facility, sending commands to the
server and visualizing the results. Altogether, following parts have been implemented:

1. Hardware part - Signal storage system locally embedded on FEE, add-ons and some
TRBs.

2. Server side - Software for controlling the monitoring procedure, running on one desig-
nated TRB with a fixed IP address.

3. Client side - Software executing commands specified by the user.

4. GUI1 - EPICS control center using an embedded monitoring client.

4.2 Hardware Monitoring Section

Following the approach from figures 3.25, 3.26 and 3.28, corresponding VHDL entities have
been implemented, enabling a synthesis on any FPGA chip. The implementation runs under

1GUI = Graphical User Interface.
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the name Real-Time DEvice MONitoring Framework (DEMON). The monitoring facility is in-
tended to be used on many different detector FPGA chips during beam time at GSI and FAIR.
The chips will be acquiring the corresponding monitoring signals in their internal hardware2.
They need to forward all the signals packed together over one or two huge ports to the mon-
itoring system (see section 4.2.2 – ”The Input Interface”). After that, the monitoring can be
accomplished automatically. The signals are first buffered and then read out over the TRBnet
slow control channel.

FIFOs and Registers

The principal cell for storing the monitoring signals is the FIFO cell, easily found directly in
the IP-cores3 of FPGA manufacturers. The main attention of this thesis lies in the variety of
different FIFO configurations, required to hold any arbitrary detector signal, and the wide range
of possibilities on how to read them out. The signal should not be further analyzed, but just
buffered as raw-data together with its timestamp. Due to the many operational modes of a FIFO
cell, a FIFO controller is needed for data flow supervision. FIFOs also possess configuration
cells, storing the current mode and providing real-time controls. For further details, see section
4.2.3.

Not only FIFOs will be used as storage cells, but simple registers as well. The monitoring
facility needs to be very resource friendly, hence some non-time-critical signals should be stored
in plain D-flipflops serving as storage registers [Okl08b, Tin00]. Therefore, the monitoring
system needs to support basic register access. The registers are extremely useful, as they allow a
direct insight on the present state of the detector hardware. An illustration of the storage process
is shown in figure 4.1.

Figure 4.1: The basic monitoring principle. Data is acquired over an interface on the left-hand side and
stored inside FIFOs or registers. The cells can be read out and configured over TRBnet.

2The term internal hardware is used to denote all the FPGA-internal logic devices other than the monitoring
system.

3IP = Intellectual Property, predefined libraries enabling fast integration of basic components on FPGAs and
other programmable devices.
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Adaptability

Before DEMON can be integrated into the HADES system, the detector developer(s) must define
all signal properties first, involving their size, timestamp generation mechanism and storage
space they require. These specifications are kept central in one VHDL-File, as described in
the following section. The file contains generics and constants configuring the entire hardware-
related monitoring structure. After the configuration is carried out, the monitoring utility can
be synthesized automatically. It appears that every sub-detector system will follow a different
approach, hence there will be approximately N different DEMON setups, where N is the number
of sub-detectors, and each setup will be run on several equal chips. For example, monitoring
of the MDC detector can be performed directly on the front-end electronics and since there are
approx. 400 such chips, they will all use the same DEMON configuration. Moreover, it is even
possible to configure each chip individually with a different monitoring setup which is, however,
due to the large number of chips not recommendable.

4.2.1 DEMON Configuration File

Since the monitoring system needs to be highly versatile, the user must specify how many sig-
nals, which FIFO types, timings, etc. are going to be used in the current experiment. Therefore
the demon config.vhd file is necessary. It is ready-made for VHDL-synthesis, requiring only
slight adaptions to suit any monitoring setup (see Appendix A). Following configurations can be
done:

• FIFO number (0–20)

• Register number (0–32)

• FIFO bus width (0–64)

• Register bus width (0–64)

• Size of the configuration cells (0–32)

The current version supports up to 20 FIFOs and 32 registers. The FIFO and register bus
widths must be wide enough to carry the widest FIFO or register signal, respectively. Once set,
the internal monitoring bus can not be changed anymore. The width should therefore be set wide
enough to carry the maximal possible FIFO and register. For example, if a monitoring system
requires FIFOs of widths: 16, 20 and 28 bit, than the FIFO bus width needs to be 28 bit wide.
The same applies for registers. A detailed illustration is shown in figure 4.2. It is possible to use
64 bit for data transmission, although 32 bit is TRBnet standard. Therefore if using more than
32 bit, the monitoring data requires two read signals and the software part needs to handle these
signals with care.

Additionally, each FIFO cell has to be customized separately. Following FIFO properties
must therefore also be declared (an explanation can be found further below):

• Width

• Depth

• Logarithm of depth (automatic)
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Figure 4.2: A description of the FIFO input port. All incoming signals are extended to 32 bit size due to
the largest input signal. Therefore, the input port is 128 bit wide and the internal bus width is set to 32
bit. The FIFOs currently only support widths: 8,16,32 and 64.

• Control bits
• Monitoring type
• Frequency
• Timer type
• Timer resolution
• Timer size
• Data size
• Event size

The monitoring system strongly differentiates between the FIFOs and the much simpler reg-
ister cells, as the latter consume much less resources. Therefore additional properties of every
register need to be specified:

• Width
• Control bits

Lastly, the initial contents of a configuration cell can be defined. Every FIFO comes with a
configuration cell and all configuration cells are of same size. They are used for online config-
urability of the monitoring system and are the only cells that can be written to. Every bit inside
the configuration cell corresponds to a FIFO operation or an operating mode. The bits are in-
ternally connected to particular FIFO logic. Currently only four bits are connected. They allow
following operations: reset, ringbuffer mode, input validation and halt/unhalt FIFO writes. At
the moment, they seem sufficient to perform any high-level user command, but additional bits
can also be used in future for more sophisticated instructions.
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Figure 4.3: Predefined operations of the configuration-cell. These cells control the FIFO behavior online.

Explanations

Figure 4.4: Each FIFO can have different data partitions. The control bits can be allocated and do not
add to the data width (see section 4.2.2).

• FIFO width denotes the entire width of the data packet stored inside the FIFO. The entire
data packet is composed of: raw data, timestamp and an event-number. As can be seen
in figure 4.4, data size, timer size and event size partition the data packet according to the
following equation:

data size+ timer size+ event size = FIFO width.

• The FIFO depth specifies how many data packets a FIFO should contain. Following
values have been implemented so far: 16,32,512,1024,2048 and 4096. The logarithm of
depth is needed for some additional functionality and will be calculated automatically.

• The frequency specifies with which speed the FIFO can be written to. Different signals
need usually to be acquired with different frequencies. The FPGA runs with 100 MHz
and the highest possible write resolution is therefore 10 ns (denoting every clock-cycle for
f requency = 0). The actual frequency is 2 f requency, so when specifying f requency = 15,
the FIFO would be acquiring data every 328 microseconds. For a complete frequency
table, see appendix B.

• Timer type and resolution have already been explained in section 3.6 and can be best
understood with figure 3.26 and table 3.3. They define the timer domain and the time
counting speed, respectively.
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• Control bits allow optional controlling features, that the user needs manually to imple-
ment and are described in section 4.2.2.

• The monitoring type is one of the predefined settings described in section 4.2.3.

The ROM

In order to distinguish the raw input signals from each other and due to the discussion in section
3.6.2, signal specifications need to be stored locally on every FPGA chip. For this purpose,
a ROM module is used which contains every signal being monitored alongside its properties
(like width, depth, frequency, etc.). Its contents are generated automatically from the ”de-
mon config.vhd” file and always follow the same scheme. Addresses 0 –79 contain FIFO signals
(4 addresses per signal, see figure 3.27), and the rest contains up to 32 register specifications.

The first step of the monitoring operation is to read out the entire ROM on every FPGA and
acquire the specifications for every monitoring node. In this way each client PC located outside
the TRBnet can create a map of addresses and signals that need to be handled.

4.2.2 The Input Interface

Monitoring signals are provided over an interface between the monitoring system and the re-
maining FPGA devices. The internal hardware needs to provide the signals, since they strongly
vary between sub-detectors. The signals are subdivided into FIFO- and register-signals, to sep-
arate the two types from start on. Therefore, only two (but large) input ports are carrying all the

Figure 4.5: The monitoring signals are provided over the FIFO and the register port. The internal hard-
ware needs to combine all inputs together into one huge port, which is decomposed by the DEMON
system according to the preset bus width.
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signals. The FIFO-port can be used for time-sensitive monitoring tasks (like statistics, behavior,
analysis and similar), while the register-port for direct access to the hardware states (tempera-
ture, voltage, etc.). Both ports are composed of many individual input signals which partition the
port in equally occupied segments (figures 4.2 and 4.5 show some examples). The width of each
port-segment needs to be equal (see figure 4.2). The smaller input signals are inflated with zeros
to meet the equality condition. Although it might seem wasteful, in this way the inner structure
can be realized much easier, consuming less logic cells and enabling very simple multiplexers4

later on. The equal bus width for all FIFO and register signals inside the monitoring system is a
premise.

All FIFO and register cells, which are numbered consecutively, simply gain access to the
corresponding segment of their input port (see figure 4.5). For example, if the FIFO bus width
is 32 bit and if there are 8 FIFOs in the monitoring setup, then the FIFO input port would be of
256 bit size and the first FIFO would gain access to the first 32 bits (i.e. 0–31), the second FIFO
to bits 32–63, and so on. If one FIFO uses less than 32 bits, only the least significant bits will be
used for monitoring.

Details

The reason for equal port splitting lies in the implementation technique. The design calls for a
generic synthesis. At implementation time, the entities do not know how many FIFOs and input
signals are there going to be used. Moreover the number of storage cells strongly varies, but
one single source code needs to be able to generate arbitrary many cells. However, there is no
completely efficient method to solve such versatile design in VHDL.

The cells need to be read out using one RegIO module afterwards and therefore multiplexers
are required (as the RegIO can handle only one address at a time). In case of the FIFO cells, one
single multiplexer is used to distribute the read signals to the FIFOs and multiplex the responses.
If the signals that need to be multiplexed vary in size, the multiplexer needs additionally to store
the signal widths in some internal registers in order to handle the signal properly.

A much simpler solution is to use a universal bus width, in order to generate arbitrary many
cells from one single source code. By reading the configuration file, the system can ascertain
how many cells it needs to create and, more important, how to connect them. This can be
implemented by a simple generate5 statement. The multiplexer does not need any additional
information, as it simply divides the combined input port into equal segments (the bus width).
Based on the address received from the RegIO, it selects the signal. The generate statement
simply uses the number of FIFOs and the FIFO bus width from the configuration file to create
and connect all cells to the FIFO input port and to the FIFO multiplexer. The register cells are
generated in the same way. The source code and additional information is given in appendix C.

4Multiplexers are digital components responsible for signal switching. One single output signal is connected to
one of the multiple input signals. The selected input signal is adjusted according to an additional control port. They
hence enable basic signal selection. [Tin00]

5In VHDL, the generate statement can be used to apply dynamic hardware generation. In this case, the statement
determines how many FIFOs and registers are defined in the configuration file and uses a FOR-loop to generate each
of them with their own properties. In this way, the number of cells may vary, but it does not have any impact at all
on the source code.
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Control Bits

One additional aspect greatly contributes to the extensibility of the monitoring system. Besides
the two input ports, additional control bits can be set by the internal hardware. They can be used
to accomplish various tasks, however manual implementation is required. They are completely
optional and can be used to pass some controlling options coming from the internal hardware
directly to the monitoring facility. These controls can perform arbitrary algorithms which the
user needs yet to implement (and which depend on the situation). For example, if the internal
hardware reaches a certain state, the monitoring might need to stop or some values have to be
discarded. This behavior can thus be passed on immediately to the monitoring system over the
control port.

Moreover, the currently used monitoring signal can be marked with a small bit pattern. The
control port can be used in this case to label the data packets in their storage cells. For this
reason, the FIFO- and register-cells can contain ’control bits’. The bits from the control input
port can regulate a mechanism (like a finite state machine, for instance) which sets the control
bits pattern on top of every data packet according to the current situation. The marking is stored
inside the FIFO or register. Moreover, a readout mechanism can be easily implemented which
distinguishes monitoring signals based on their markings. An internal data processing mecha-
nism can be accomplished in this way, like for example when a high temperature is present and it
is known that the hardware tends to malfunction at these temperatures, the control bits can mark
the inconsistent packets or discard them instantly to achieve better statistics. The possibilities
are open to any developer to implement their own algorithms, as needed. Figure 4.6 displays this
process. The control bits do not interfere with the actual data, however their number is limited.
Table 4.1 in the following section displays the limitations for every FIFO type, whereas register
control bits are not limited.

Figure 4.6: The control port can be used to implement additional algorithms. The upper part shows
a FIFO, while the lower describes the marking procedure inside a register. The control bits can be set
automatically by the hardware to perform arbitrary monitoring operations.
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4.2.3 The FIFO cell

The entire FIFO cell is a complex system, containing a FIFO controller, the actual FIFO and lots
of logic.

The FIFO Controller

The FIFO controller is responsible for input filtering. It receives the monitoring signal from the
corresponding interface segment and has three important functions. First one is the frequency
regulation. The controller uses an internal counter to determine when the preset frequency has
been reached. When the counter is equal to 2frequency, a WRITE signal is released to the FIFO
(whereas the input data is passed all along). In this way, the FIFO can write signal data only
at certain frequency. The controller can furthermore perform input-validation, storing only
differing signals. If a signal did not change since the last WRITE, it will not be written again.
This behavior can be switched on and off using the corresponding configuration bit (see figure
4.3). One more interesting feature of the monitoring facility is the internal marking of data
packets, as explained in section 4.2.2 – ’Control Bits’.

Figure 4.7 shows a simplified FIFO controller structure. It can be divided in two parts, the top
and the bottom part. The logic in the lower part is responsible for correct frequency handling.
The upper part can be avoided if the VALIDATE signal coming from a certain configuration bit is
set to low. Otherwise, if it is set to high, the current input data is compared to the previous data
stored in the register and blocked as long it does not differ. While data is blocked, the WRITE
signal is also disabled (not depicted here).

Figure 4.7: Basic FIFO controller logic. The upper part can be switched off using configuration cells
connected over the VALIDATE signal.
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The FIFO cells

For every FIFO module, a bit-matrix has to be allocated inside the FPGA hardware. Since the
FIFO widths and depths strongly vary, the resource consumption can become quite large. In
order to suit every experiment in near future, a large collection of possible FIFO types has been
pre-designed to minimize the resource consumption and adapt itself to the current situation.
Usually, a proper FPGA chip contains many Block RAMs (BRAMs) and has its logic imple-
mented in Look-up Tables (LUTs). Therefore two types of FIFOs can be implemented. If no
logic cells are left, a large FIFO can be instantiated using one or several Block RAMs. How-
ever, if no Block RAMs are free, the smaller LUT-FIFOs can be synthesized, consuming some
remaining logic-cells (LUTs). Therefore, all FIFOs are either implemented on Block RAMs or
Look-up Tables and synthesized on the Xilinx and Lattice FPGA chips of the FEE or readout
boards. The LUT-FIFOs do not support control bits in the current version. Table 4.1 summarizes
all implemented FIFOs.

Type Size Resource Consumption Control Bits
Block RAM 16 × 1024 1 Block RAM 2
Block RAM 16 × 2048 2 Block RAMs 2
Block RAM 16 × 4096 4 Block RAMs 2
Block RAM 32 × 512 1 Block RAM 4
Block RAM 32 × 1024 2 Block RAMs 4
Block RAM 32 × 2048 4 Block RAMs 4
Block RAM 64 × 512 2 Block RAMs 8
Block RAM 64 × 1024 4 Block RAMs 8

Look-up Table 8 × 16 8 Look-up Tables –
Look-up Table 8 × 32 16 Look-up Tables –
Look-up Table 16 × 16 16 Look-up Tables –
Look-up Table 16 × 32 32 Look-up Tables –
Look-up Table 32 × 16 32 Look-up Tables –
Look-up Table 32 × 32 64 Look-up Tables –
Look-up Table 64 × 16 64 Look-up Tables –
Look-up Table 64 × 32 128 Look-up Tables –

Table 4.1: All of the implemented FIFO types are listed here. The control bits come free with every
Block RAM (they are the FIFO parity bits) and can be used for additional information. The resource
consumption gives merely a reference value (on a Xilinx chip), since additional resources for logic and
wiring are required.

FIFO Modes

Since the FIFO acquires data packets with constant frequency, it tends to become full before its
results can be read out. When full, the FIFO throws away incoming data packets. This behavior
may lead to unwanted side-effects, therefore another FIFO mode has been implemented – the
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ringbuffer mode. When a FIFO reaches its nearly-full boundary, it discards the oldest data
packet, i.e. a ’fake read’ is performed as presented in figure 4.8. In this way, the FIFO contents
are always up-to-date. It can also happen that new data is written with higher frequency then
it is read out. In this case the FIFO first needs to be halted and then read out to prevent data
inconsistency.

The ringbuffer mode, once turned on can also be switched off again using the appropriate con-
figuration bit. Every FIFO can be instantiated in the ringbuffer mode, however it uses slightly
more resources than the plain FIFO in the standard mode. Hence, if it is known that the ring-
buffer mode is not necessary, an alternative, simpler FIFO can be built with lower resource
consumption. This implies that every FIFO type from table 4.1 possesses two modes exactly
– the standard and the ringbuffer mode. Where the ringbuffer mode can mimic the standard
mode, it does not work vice versa.

The data count limit for the nearly-full behavior of the ringbuffer is dynamic and depends on
the FIFO size. It is calculated according to the simple equation:

f i f o−depth − log2( f i f o−depth) = limit

Tests have shown that it is safe to set the boundary to a static value in future (see figure 4.8).
When the data count reaches the limit, a READ signal is triggered and the t1 flag denotes it. In
the next clock cycle, the FIFO is offering one data packet. After a t1 signal, the t2 flag is always
triggered in the following cycle, denoting that the FIFO data is fake and needs to be discarded.
Hence the offered data packet is never going out of the storage cell if the t2 flag is high. If the
limit has been reached and a real READ signal is pending, then the t1 flag will not be released.
Altogether, the t1 flag marks a fake READ and the t2 flag discards the data packet. In this way

Figure 4.8: The ringbuffer function of a FIFO cell is depicted here. In this example, the FIFO depth is
only 32 and hence the limit is 27 data packets. The FIFO write signal and the clock cycle are the same.
When the limit is passed, the cell starts initiating fake reads, thus the data gets discarded to make room
for the newer signals. The fake reads are set internally, however if a real read comes from the RegIO, the
t1 and t2 flags are not set and the packet is read out.
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a ringbuffer functionality can be easily realized in any FIFO. As can be seen in figure 4.8, even
when WRITE signals are coming in every clock cycle, the ringbuffer never tends to get full. The
flags can also be released in every cycle and even distinguish real and fake READ signals with
no problems.

4.2.4 Address Space

Now that data can be stored inside the cells, the monitoring system needs to access each of the
cells individually through the slow control channel. As part of TRBnet, each board contains a
unique address. Therewith each FPGA chip in the network can be determined and every single
monitoring setup accessed. Inside the facility, however, in order to distinguish the cells among
each other, the RegIO module is needed. As explained in section 2.3, it has been designed as part
of TRBnet in a related work [Mic08] and governs the entire address range within the FPGAs.
It was initially designed to directly read from or write to certain registers, but since READ and
WRIT E signals and the response can be sent in the media interface specific format, it will be
also used for monitoring control. Its basic functionality has been already discussed in figure 2.8.

Every storage cell containing monitoring signals automatically undergoes an internal number-
ing within the chip. The cell rank is added to the current address space to obtain the cell address,
e.g. the address of FIFO 1 is the first address in the FIFO address range, thus 0x2000 and the
4-th register operates under the address 0x3003. The addressing remains the same on every chip
and can be derived directly from the ROM. Table 4.2 shows all currently used address ranges.

Component Address Range
ROM module 0x1000 – 0x106F
Configuration cells 0x1800 – 0x1813
FIFO cells 0x2000 – 0x2013
Register cells 0x3000 – 0x301F

Table 4.2: The DEMON implementation supports only the listed addresses. It has been limited to 20
FIFOs and 32 registers, and the ROM contains 112 entries. If higher addresses are not in use, more cells
can be realized in the future. An inappropriate address on the slow control channel results in an ’unknown
address’ response and terminates the request.

Attached to the RegIO, another TRBnet entity is present – the RegIO bus handler. It has
been designed to partition the entire address scope of the RegIO into smaller parts. In case of
the monitoring system, four segments are being used according to table 4.2. The cell access
is realized in two steps. First, the RegIO bus handler determines the correct segment for the
access, based on the most significant bits of the cell address. Afterwards, a multiplexer selects
the corresponding cell using the least significant bits and transmits the read/write request. Only
the ROM does not posses a multiplexer and can be read out immediately. Therefore, during
a request the incoming address is resolved twice, except for the ROM. The multiplexer also
handles the handshakes with the RegIO and is responsible for sound readout of large datawords
(larger than 32 bit). More details can be found in section 4.3.2 – ”Controlability”.
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4.2.5 DEMON Summary

The monitoring signals arrive over two input ports. They are stored either in FIFO- or register-
cells. All FIFOs contain a controller which regulates the writes, and a configuration cell storing
the current state and mode of operation. Another port for additional, optional and automatic
hardware controls can also be used, but needs to be implemented manually.

The actual acquisition of monitoring signals is performed over the TRBnet slow control chan-
nel. The requests consisting of a cell address and the control signals are resolved in the RegIO
modules and forwarded to the multiplexers. After that, the cell can be read out and data is
forwarded through TRBnet to the monitoring server.

The entire monitoring scheme is shown in figure 4.9. The signals are provided on the left-
hand side. The first monitoring step is to read out all the ROMs and determine the DEMON
configuration on every chip.

Figure 4.9: The entire hardware part. Configuration cells directly control the FIFOs and their controllers.
The ROM contains all signal properties, whereas raw data is either stored in registers or buffered in FIFOs
with additional timestamps. The number of FIFOs, registers, FIFO controllers and configuration cells
varies from setup to setup, as well as their properties.
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4.3 Software Monitoring Section

In order to acquire the monitoring data over TRBnet, a software counterpart is used to gather
the buffered hardware signals. A TCP/IP server is additionally necessary to extract the data over
the Ethernet. Outside the TRBnet, a client sends monitoring instructions specified online by the
user and gathers the responses. In this way, the client on any PC can use the server to control
the monitoring system over the Ethernet line. Both software parts, the client and the server, are
written in C programming language.

4.3.1 The Server

The main purpose of the TCP/IP server is to control the FIFOs, gather all monitoring signals
and export them outside of the optical network. It accomplishes this task by receiving the corre-
sponding instruction from the client as a string. Currently, only three instructions are necessary:
ROM, READ and WRIT E.

Figure 4.10: The server output in a Linux console. The 733 characters long stream represents the contents
of three ROMs. The ROMs contained 4–12 FIFOs that needed to be encoded correctly.
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ROM. The ROM command allows the server to execute a call to all monitoring FPGAs and
acquire their ROM contents. A large stream is returned by the TRBnet containing an address
and the contents for each ROM. Based on this stream, an internal C structure is filled that holds
the entire monitoring setup. The applied number of chips alongside their addresses, FIFOs and
register properties are first stored in this structure. Afterwards, the server generates an ASCII
stream. The structure is encoded into a string and transmitted back to the client. Separators
split different chips and FIFOs in the stream. The ’#’ symbol separates two consecutive FPGAs,
whereas ’˜’ distinguishes the three parts of one single FPGA stream: the header, the register part
and the FIFO part. The header part contains the address and the numbers of FIFOs and registers.
Each value is always separated with a ’/’ symbol. The register part contains register sizes only
and the FIFOs in the FIFO part are additionally separated using the ’+’ sign. Figure 4.10 shows
some server responses, where the first instruction is the ROM command.

READ. The read command can be used for a single read or a blockwise readout. In both cases,
additional parameters are decoded from the instruction. The complete command looks more
like: ”READ+F003+2001”. The string is split according to the ’+’ character and the first value
(F003) is the hexadecimal TRBnet address of the chip, where the second (2001) resembles the
hexadecimal storage cell address on that particular chip.

For a blockwise read, the number of data packets can be additionally provided together with
the option to increase the address range with each read, or leave it as it is. By increasing the
address automatically, several consecutive storage cells can be read out at once, for example
”READ+F003+2001+3+1” would acquire monitoring data from the TRBnet address 0xF003
and the cells 0x2001, 0x2002 and 0x2003. If the last option in the example is a ’0’, only three
reads to the cell 0x2001 would be performed.

WRITE. Contents of a configuration cell can be altered using this command. Again, a single or
a blockwise write instruction can be released into the TRBnet. Parameters are again the chip and
the cell addresses. This time the data needs to be supplied as well, thus the command syntax is:

1. WRITE+F003+1802+0+ON

2. WRITE+F003+1802+3+OFF

3. WRITE+F003+1802+11101011

The first example resets the FIFO (bit ’0’ is set to high), the second unhalts it if it was halted
and the third sets the entire configuration vector6. If a number is provided after the cell address,
followed by an ’ON’ or ’OFF’, then a single write to the specified bit is executed. Since bit ’0’
controls the reset, if it is turned on, the FIFO will reset itself (first example). After a successfull
execution, a confirmation is sent back to the client.

Server Operation

The server is activated on a particular TRB in the Linux-shell and listens on a certain port non-
stop for incoming calls. It uses the two 16 bit lines connected directly to the FPGA to commu-

6In this example the configuration cell is 8 bit large.
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nicate with the hardware. The software relies on an implementation of the TRBnet ”libtrbnet”
classes developed in Munich. The tool already provides basic TRBnet support over a Linux
shell and grants access to the RegIO. These commands are applied as high-level instructions to
acquire monitoring data and write to the configuration cells.

It is possible to send a request to every TRBnet node at once by using the address 0xFFFF. In
this case, the response is a huge array with the requested signal coming from all network nodes.
The incoming data is packed and transmitted to the client afterwards. Current version does not
support this function due to the manual grouping option which is more secure.

4.3.2 The Client

The monitoring client uses a TCP/IP interface to communicate with the server. It can be started
from command line in a Linux shell, in which case the user selects predefined control commands
to send to the server. The command line menu currently contains nine commands, as shown in
figure 4.11.

Figure 4.11: The client uses a simple menu to initiate user commands. Currently, the contents of a ROM
are displayed on the screen. ROM3 hass the TRBnet address 0xF007, four FIFOs and 16 registers with
all the properties from the lower table. All the registers are 64 bit wide, in this example.

51



4.3. SOFTWARE MONITORING SECTION CHAPTER 4. IMPLEMENTATION

The first command is to read out the ROMs. The client receives the stream containing every
ROM content in an augmented ASCII string. Every monitoring chip is separated by the ’#’ sign
and contains additional separators, as explained in section 4.3.1. The client parses this string
and stores the monitoring setup in an internal datastructure. After the initial step is performed,
the monitoring can begin.

The user has the possibility to display the entire system on the screen and group individual
chips. The entire setup will be used to monitor different detectors, therefore related setups can
be grouped together to read them out with a single command. The entire group is handled
by sending one READ or WRITE command to all the individual addresses in the group. This
procedure can also be initiated in a POSIX thread. In this case the user may specify the readout
frequency, after which the client starts to gather all signals constantly in a loop, until its thread
is dismissed. The user can always choose addresses, cells and options from a list, which is
generated at run-time according to the current setup.

Controlability

The client contains the entire setup and needs therefore to perform some additional validity
checks. First of all, after each write, the client awaits a confirmation. If it is received, the
contents of the configuration cell are updated in the internal C structure. In this way, the user
can always determine the current FIFO state. Second, if a cell needs to be read out and its
size exceeds 32 bit, its contents are read out twice. The current RegIO version can not handle
datawords larger than 32 bits. Therefore, larger monitoring signals are buffered in the FIFO- and
the register-specific multiplexers. The multiplexer sends the large dataword in two segments.
During the first read, only the lower 32 bits are sent back. Afterwards, the multiplexer awaits the
second read to transmit the second part, without reading the FIFO or the register out again. The
client combines both data chunks in the end. The client additionally needs to support correct
readout approach. The read out data needs to contain sane values. Since the internal latency
amounts to 10 clock cycles, data can not be read out faster than that. If a packet is read out, a
new one can be written to the FIFO in its place. Thus if the write frequency is higher then 10
cycles, the packets inside the FIFO get fragmented and inconsistent. The write frequency has
been slowed down to 10 cycles and might lead to undesired effects, i.e. to data loss. In order to
maintain consistent data sets, the FIFO can be halted before it is read out blockwise. The client
checks the frequency on blockwise readout requests and informs the user to halt the writes, prior
to reading the FIFO out.

Another important feature is the grouping of similar readout nodes. The user may specify
which nodes should be grouped together. A list of all TRBnet addresses is displayed and the set
can be created. Afterwards, the collective read of a group can be performed. All nodes behave
as they were only one single chip. Therefore the user simply specifies the cell and the readout
method (normal, blockwise and/or threaded) and acquires the monitoring signals of the whole
group.

In practice, the command-line tool is interesting only for quick debugging. Appropriate de-
tector analysis and more convenient monitoring can only be performed using graphical user
interfaces or at least data visualization frameworks. Therefore, the client has been completely
embedded into an EPICS API, as presented in the next section.
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4.4 EPICS Application

The Experimental Physics and Industrial Control System (EPICS) [EPI] is a widespread open
source software platform. It combines a vast number of different applications to provide a
generic infrastructure and facilitate the operation of scientific instruments throughout the world.
It basically creates a distributed control system, i.e. a network with servers providing physi-
cal data which are stored internally in so-called process variables (PVs), and clients7 that can
process the PVs in many different ways and even visualize them. There are various client tools
available and the possibilities are practically endless, however in this thesis, the EPICS system
is only partially used specifically for data visualization and GUI control.

4.4.1 Brief Introduction

The EPICS software has been developed to regulate extremely large and complicated systems
and to grant access to the usually large device network combined with them. It creates a new
software bus for data interchange and allows in this way communication between the user(s) and
the hardware. The network protocol is called channel access (CA). It provides high bandwidth
for internal communication. The servers usually have direct access to the hardware devices. The
data therefore originates from real-world physical systems (accelerators, telescopes, etc.) and is
published to the CA over the servers which are also termed input/output controllers (IOCs).
Figure 4.12 sums up the whole procedure. The IOCs provide PVs into the CA and afterwards the
client-side applications visualize the PVs gathered from the CA. Once a CA is created, arbitrary
clients may attach to it, however security measures can be initiated to prevent the access to some
PVs. In this way, any software infrastructure can be created to support the experiments. With the
EPICS base installation, a large library of C/C++ headers is also included. EPICS is preferably
designed to support PV access with any C application.

Figure 4.12: The basic EPICS system contains client(s), server(s) and the CA. All clients can execute
different visualization software and the IOCs operate independently as well. Practical setups can involve
hundreds of clients and IOCs. On the top right side, the EPICS logo is shown.

7The client is also referred to as the Operator Interface (OPI)
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Before the CA can be used, an internal database containing all applied signals and procedures
needs to be created. The database structure is very simplistic and contains merely records. A
record on the other hand is a very complex object. It is defined over its fields, which denote
besides its name and type what kind of processes the record can start, which PVs it contains and
what are their scan intervals, value ranges and other attributes. The records are the active parts
of an EPICS system and provide the CA functionality.

4.4.2 GUI Realization

There are many possibilities to use the EPICS system for monitoring. It is equipped with native
monitoring support and the monitoring server from section 4.3.1 could be integrated into the
EPICS API as well. This would facilitate the signal readout, but it would still require the server-
client connection over the Ethernet, thus a communication overhead would be added. The data
would be encoded into PVs and the server would listen to the CA for broadcasts. Therefore,
the communication overhead has been minimized by applying a manual implementation of a
TCP/IP server. On the other hand, all EPICS applications operate on PVs only. If an EPICS
GUI is used for data visualization, the EPICS protocol needs to be implemented on the client
side to support the PV access. Thus a simplified EPICS setup is used in this case, without the
EPICS hardware support, as shown in figure 4.13.

Figure 4.13: The simplified EPICS setup used for monitoring contains no hardware device. Instead, a
modified monitoring client (embedded in the IOC) connects directly to the TRBnet TCP/IP server.

The final goal of this thesis is to develop a visualization platform for the acquired monitoring
signals, but since the detector is still in development, no comprehensive information on signal
types is known. Thus the GUI can not be developed effectively. Another aspect is also the variety
of detectors and end-users. It is not feasible to create one single comprehensive GUI regulating
all system types, as the values they monitor tend to differ, as well as their visualization method.
But this is also one of the main reasons why EPICS should be applied. The API is highly
modular allowing all users to customize their own settings, adapting itself to arbitrary monitoring
setups. To demonstrate the compatibility between the DEMON system and EPICS, the API has
been tested with a well known EPICS GUI, the Motif Editor and Display Manager (MEDM).
However, the final version can only be created when more information on the experiments is
known and a more complex TRBnet structure can be created. In following, only a proof of
principle is provided and not the final GUI implementation.

54



4.4. EPICS APPLICATION CHAPTER 4. IMPLEMENTATION

MEDM is a versatile GUI containing a large library of components, frequently used for device
monitoring and control (meters, bars, plotting utilities, text editors and many more). The com-
ponents are controlled using internal PV interfaces. Each component has some basic properties,
like size, range or timing intervals, but also a PV linked to it. Monitoring components display
the meters and bars by reading from the CA, while control components write PV values into the
CA.

After an IOC has been created, the EPICS database needs to be set. When the IOC is running,
it automatically provides a CA derived from the database records. The IOC can be started
directly from the MEDM GUI over a control button (’shell command’), so the user only has
to start MEDM to gain full control. A minimal component arrangement has been created in
MEDM to support this process. As previously mentioned, the IOC does not have direct hardware
access. Instead, it implements a modified version of the monitoring client from section 4.3.2 to
communicate with TRBnet.

Implementation Details

In the final version, the user will control the modified client over MEDM control buttons and
dynamic menus. In the current implementation, only basic functionality has been realized to
demonstrate the compatibility between the monitoring system and EPICS. An implementation
of the full GUI is not feasible due to time limitations of this thesis. However, there have been
exemplary source codes generated to facilitate the implementation of the GUI later on.

The IOC contains a precompiled C application. The application contains a callback function
which performs following steps:

1. Get an instruction from a special PV (pv1)

2. Send the instruction as a string to the server

3. Gather the server result

4. Store the result in a predefined PV (pv2)

After a click on the appropriate button in MEDM interface, a shell command is executed to
start up the IOC on the client Linux PC. While starting, the IOC executes a script, loading all
the necessary records from the database and putting pv1 in a subscription state. When the PV
is in the subscription mode, the CA automatically monitors changes to that PV, after which it
executes the callback function from above to start the monitoring process. After the initialization
script, the IOC is ready and listens for user commands.

The commands are initiated by the user in MEDM. They can be typed directly in a textfield
on the screen (the blue input field in figure 4.14). When the user presses the SEND button
afterwards, pv1 changes its value, initiating the callback function due to the subscription method.
Thus the command, written by the user in the textfield, can be forwarded to the server. The
server reply is then displayed on the screen over pv2. A demonstration of the minimalistic GUI
is shown in figure 4.14.
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Figure 4.14: A minimalistic EPICS GUI. The meters, bars and fields in the upper part are just examples
and do not display real monitoring values. The INIT button should be pressed first to start the IOC and
set up the CA. In the lower part, the user may execute a command typed in the blue textfield and send it
to the server by pressing SEND. The server response is displayed in the green field.

4.5 Summary

In figure 4.15, the entire monitoring architecture can be observed. Multiple input signals are
acquired through detector readout nodes or FEE. The monitoring data is stored locally on the
chip, with a suitable timestamp. The storage process runs in parallel and an increased number of
FIFOs and registers does not affect the performance. Over a RegIO interface the system can be
controlled and read out. After a READ signal, the FIFO contents are sent to the monitoring server
in 32 bit format. The server interprets basic RegIO functions (single/multiple READ/WRITE)
coming by the client over the Ethernet line. On the client PC, the user may either specify which
instruction to send over a Linux console, or by applying an EPICS GUI (which is currently still
in development). As shown in figure 4.15, the client can group similar chips and access them all
at once. Also an automatic refresh of a given address or a group is supported.
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Figure 4.15: A scheme of the entire monitoring procedure. Monitoring can actually be performed on any
TRBnet FPGA, besides the server. The client allows different readout methods to be performed.
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5 Evaluation of the Work

The proposed solution has been extensively tested under normal conditions (no beam time). A
simple TRBnet setup has been created and the endpoints have stored dummy data in their FIFOs
and registers. Several different monitoring setups have been analyzed this way.

5.1 DEMON Tests

At first, only two TRBs were connected together. One TRB was acting as the TRBnet endpoint,
while the other as the monitoring server. The server was able to directly read out the monitoring
signals of the endpoint through a Linux console. The dummy data has been composed to count
clock cycles. After acquiring it, the cycles have been incremented according to the defined FIFO
frequencies. Therefore, the FIFO controller is operating correctly reflecting exactly the preset
frequency.

FIFO Frequency Data Test Ringbuffer
BRAM 16×1024 high passed OK
BRAM 32×512 highest passed OK
BRAM 32×512 high passed OK
BRAM 32×1024 high passed OK
BRAM 32×2048 highest passed OK
BRAM 32×2048 high passed OK
BRAM 32×2048 moderate passed OK
BRAM 64×512 highest passed OK
BRAM 64×512 high passed OK
BRAM 64×1024 high passed OK
LUT 32×16 high passed OK
LUT 32×32 high passed OK

Table 5.1: All the cells have been examined carefully with a logic analyzer. All modes were operational
and produced valid output.

Nearly all FIFO types were tested over the console, using 1–3 predefined frequencies: highest
(every clock cycle), extremely high (every second clock cycle) and moderate (every 16-th clock
cycle). The test results are shown in table 5.1. All FIFO contents have been analyzed carefully
using a logic analyzer. The ringbuffer-, as well as the standard-mode of the presented FIFOs are
operating correctly. Lastly, the bus width has been varied to analyze 32 bit and 64 bit behavior.
As expected, when accessing the 64 bit FIFOs, two consecutive reads are necessary to obtain the
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complete data packet. Again, the entire data set inside the storage cells was intact and could be
acquired without any difficulties.

Having the hardware part fully operational, the server and the client were tested next. The
server-software was able to access and control the individual FIFOs with no problems. The
data could be transmitted to the client and client commands were interpreted correctly. So far,
neither data loss nor errors could be detected. The ROM has been read out and contained sound
values allowing the exact reconstruction of the monitoring setup. FIFO and register data could
be printed to the console on the client side, as shown in figure 5.1, and contained exact values
stored in the cells. The configuration bits have been set to test different FIFO modes afterwards.

Figure 5.1: The main hardware test has been performed over a Linux console. The current FIFO contents
are printed on the screen. The upper FIFO is operating at the highest frequency, while the lower one allows
writes every second clock cycle (the most significant bits can be ignored, since they hold the timestamp
and the event ID).

After the minimal setup, which proved the correctness of the hardware part, a more complex
network has been created. One TRB was again acting as a server, while connected to a hub
with three additional TRBs simulating the front-ends according to figure 5.2. Its purpose was to
gather and analyze the monitoring data of several different monitoring setups. By doing so, all
client functions have been verified.

The initial ”libtrbnet” classes required a slight adaption in order to support the new hub elec-
tronics. After that, however, the client could obtain the monitoring values from each TRB suc-
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Figure 5.2: The second test involved a hub which connected three endpoints simulating monitoring
signals with a TRB in server mode.

cessfully. The endpoints have been arranged in several different groups and in each case, the
data has been extracted correctly.

5.1.1 Performance Measurements

One of the key aspects of the monitoring system (and even the main argument for its design) is
the low resource consumption. The detector parts are constantly under high load and the FPGA
logic nearly filled to the maximum. Hence, monitoring can only be performed if not interfering
with the readout hardware. To create a comprehensive image, many different monitoring con-
figurations have been synthesized on the Xilinx chip (xc4vlx40). The FPGA contains 38 864
Slices1 and in some cases, they are over 90% occupied. In table 5.2, the results of the analysis
are shown. The column ’Slices’ denotes the total logic cell occupancy and plays the key role
in the analysis. The Block RAM usage is another important aspect, without which the system
could not be realized. In the first row, only the TRBnet setup has been generated without the
monitoring system. The minimal system needed for monitoring consists of a full application
(implements all four TRBnet layers) with the RegIO and the media interface. The consumption
of this minimal system can be subtracted from every following result to obtain the net monitor-
ing consumption. In the end, the internal hardware will already contain the TRBnet protocol and
the media interfaces, so the resource consumption will tend to get much lower, approximately
near the net consumption.

As can be seen, the basic setup containing 4 mixed FIFOs and 4 registers should be able to run
on any detector chip. Its net consumption is around 7% of the Xilinx resources. However, such a
setup is not advisable. When 4 Block RAM FIFOs are used, the net consumptions shrinks down
to merely 4%. Even 12 BRAM FIFOs can then be used until the 10% boundary is reached.

There has been a huge difference observed between the consumption of the LUT- and the
BRAM-FIFOs. As a result, it is advised to use the LUT FIFOs only if really necessary, since

1One slice contains two logic blocks on the Xilinx Virtex chips. Each logic block consists of one Look-up Table
and a D-flipflop (as well as some additional logic circuits).
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DEMON setup Slices Flipflops LUTs BRAMs
–NONE–

just the basic TRBnet entities 1974 (10%) 2464 (6%) 3065 (8%) 9 (9%)
without DEMON

4 mixed FIFOs, 4×32 bit Registers
32×16(LUT),32×32(LUT),32×512,32×1024 3212 (17%) 3707 (10%) 4669 (12%) 13 (13%)

Ringbuffer
4 mixed FIFOs, 4×32 bit Registers

32×16(LUT),32×32(LUT),32×512,32×1024 3059 (16%) 3686 (9%) 4384 (11%) 13 (13%)
No ringbuffer

4 BRAM FIFOs, 4×32 bit Registers
32×512, 32×1024, 32×2048, 32×4096 2750 (14%) 3443 (9%) 4065 (11%) 21 (21%)

Ringbuffer
4 BRAM FIFOs, 4×32 bit Registers

32×512, 32×1024, 32×2048, 32×4096 2739 (14%) 3426 (9%) 4027 (10%) 21 (21%)
No ringbuffer

4 BRAM FIFOs, 16×32 bit Registers
32×512 (4) 2710 (14%) 3343 (9%) 4061 (12%) 14 (14%)
Ringbuffer

4 BRAM FIFOs, 16×64 bit Registers
32×512 (4) 2733 (14%) 3360 (9%) 4112 (11%) 14 (14%)
Ringbuffer

12 BRAM FIFOs, 4×32 bit Registers
32×512 (6), 32×1024 (3), 32×2048 (3) 3741 (20%) 4738 (12%) 5542 (15%) 34 (35%)

Ringbuffer
12 BRAM FIFOs, 4×32 bit Registers

32×512 (6), 32×1024 (3), 32×2048 (3) 3708 (20%) 4689 (12%) 5431 (14%) 34 (35%)
No ringbuffer

12 LUT FIFOs, 4×32 bit Registers
32×16 (6), 32×32 (6) 5775 (31%) 6230 (16%) 7923 (21%) 10 (10%)

Ringbuffer
12 LUT FIFOs, 4×32 bit Registers

32×16 (6), 32×32 (6) 5739 (31%) 6168 (16%) 7868 (21%) 10 (10%)
No ringbuffer

Table 5.2: Several different monitoring setups have been composed to determine the resource consump-
tion on the Xilinx XC4VLX-10FF1148. The LUT FIFOs should be used with caution and only as a last
resort. BRAM FIFO can be applied in ringbuffer mode with no problems.
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they consume too many logic cells. The BRAM FIFO should always be preferred, assumed that
enough Block RAMs are present on the chip. One Block RAM is always automatically used for
the ROM, thus several Block RAMs need to be available to perform adequate monitoring.

It appears that the native FIFO mode and the ringbuffer mode consume nearly equal amount
of resources. The ringbuffer requires merely three more slices per BRAM FIFO. LUT FIFOs
however consume much more in the ringbuffer mode. Lastly, the registers can be widely used
with almost no restriction. The resource consumption of 32 bit and 64 bit registers is nearly the
same. The FPGA logic seems to generate them without any difficulties and it is advised to use
them in large numbers for debugging, testing and monitoring.

5.2 Possibilities of the Monitoring Facility

A scheme of TRBnet from a different perspective is shown in figure 5.3. Its inner nodes are
mostly hubs and readout boards, while the leafs represent the front-end electronics. The moni-
toring should be ideally performed on the lowest parts of the tree (the front-ends), as mentioned
in the previous chapters, since they allow the most possibilities. The largest information about
the current state of the detector can be found there. If for some reasons DEMON can not be in-
tegrated on the FEE level, then the readout boards need to compensate that loss of information.
However, not only the lower levels can be used to hold the monitoring facility, but just any TRB-
net node as well, especially the hubs. Analyzing the data flow through the hubs can reveal some
crucial data acquisition properties, e.g. which channels fire at most, what are the busy times and
how the data load evolves through the optical network. On the lower levels, again, the detector
states can be analyzed better, the front-end behavior examined and optimization routines tested.

Figure 5.3: The alternative TRBnet structure. The lowest level represents the front-ends, while the next
level the readout nodes. After that, in upper parts of the tree, the hubs reside. The actual tree does not
have a root and the hubs can all be connected together, in this case however one single TRBnet node
operates as the monitoring server (the root).

The generic nature of the monitoring facility allows unlimited applications. The facility can
be even used for some online hardware testing purposes. The hardware can be programmed
to generate a certain bit pattern, which is well known to the detector developers. If the pattern
remains the same without any modifications, no hardware errors should be present. The pattern
can be stored inside the FIFOs and the corresponding data packets marked with the control bits
over the control port. The control bits indeed support any arbitrary algorithm inside the mon-
itoring system that can be used for additional data routing and manipulation. In this case, the
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data can be manipulated internally and fully automatically by the hardware, like the front-ends
for example, without user intervention. The DEMON user simply needs to link the correspond-
ing control signal coming from the front-end to the control port (and of course implement the
marking algorithms). Another good use for the control port is that an algorithm can be easily
written to control the FIFO controller from the hardware side. If the FIFO needs to be kept
empty until a certain trigger has been released, the control port can block the FIFO writes. After
the trigger, the FIFO can be written to, enabling time sensitive and highly accurate monitoring
tasks, without user intervention.

The current implementation is (strongly) constricted. The number of maximal FIFOs and
registers is bound to 20 and 32, respectively, and the FIFOs have been predesigned supporting
only fixed widths (8, 16, 32, 64) and depths (16, 32, 512, 1024, 2048, 4096). An automatic
FIFO generation of arbitrary sizes could not be successfully implemented, due to the software
limitations of the FPGA manufacturers. The current release only supports the Xilinx and Lattice
chips, but regarding the upcoming experiments, the monitoring facility seems to have enough
to offer. Additionally, it is highly extensible. All aspects regarding this issue are shown in
figure 5.4. New FIFO types can be easily created following the current approach from the
corresponding VHDL-file (”data cell.vhd”) and relying solely on the IP-Core generators of the
manufacturers. The new FIFO just needs to be inserted into the configuration file afterwards,
in order to include it into the ROM and to provide the system with the necessary information
(like width, depth, frequency, etc.). The extension of the internal bus beyond 64 bit is, however,
rather inadvisable. Correct handshakes need to be present between the multiplexers and the
RegIO module. More than 64 bit would require three or more consecutive reads to the same cell,
hence in order to read one single packet, many read signals are necessary. It would seem more
convenient to use two parallel 64 bit FIFOs for input signals larger than 64 bit, and combine
their contents later on in the software. On the other hand, larger input chunks can be broken into
smaller ones and stored in the same FIFO, so that, again, several reads can be used to obtain back
the huge data word with the current implementation. Hence large input signals can be handled
with minor adjustments very swiftly. The readout of 32 bit signals is nearly twice as fast than for
larger signals, as the RegIO can not transmit more than 32 bit in one response. The limitation to
20 FIFOs and 32 registers has been chosen randomly, as the VHDL source code must possess
some clear boundaries. In future, when more powerful FPGAs should be applied, the limit can
be increased. The monitoring system is perfectly scalable to any given size.

It is very important to keep the system running without user intervention. Therefore, the
monitoring signals can be acquired absolutely automatically. The preset FIFO frequency is used
to limit the number of writes to the FIFO. The FIFO can be set to always contain either the oldest
or the newest values. The latter can be achieved with the ringbuffer mode. Therefore, any FIFO
can be preconfigured to best suit any given situation. The software part supports an automatic
data refresh mode, where a certain frequency can be set (and also changed freely by the user)
to initiate an automatic signal gathering procedure. The client and the server enter a loop and
communicate in a thread to keep the values updated on the screen.

The signal acquisition needs to be handled with care. If the FIFOs do not get read out reg-
ularly, they lose information2. The RegIO module together with the internal DEMON latency

2When the FIFO is full, either new data can not be written or the oldest data gets discarded (ringbuffer mode).
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allows two consecutive reads only every 10 clock cycles. If the FIFO frequency is higher, the
FIFO first needs to be halted and then read out, otherwise new data packets would not be stored
in order of their arrival. The client already implements routines to support this issue. Data taking
can be triggered internally by the hardware using the control port, as explained above. However,
the user can reset the FIFO and start from the beginning, after providing the right signal. Addi-
tional controls over the slow control channel can be implemented using the configuration cells.
The corresponding cell-bit just needs to be linked to the proper logic component it is meant to
control.

One important issue is the chronological ordering of stored data packets. As explained in
section 3.6, the FPGAs of one sub-detector system operate independently from one another, but
they gather the same monitoring signals. In order to combine the data from all chips together, the
timestamps need to get synchronized. For this purpose there have been three timers integrated
with different precisions. Additionally, an event number (or a part of it) can also be pulled into
the data packet for further association. During beam time, these measures should suffice to gain
a comprehensive look inside the detector and all of its parts.

Figure 5.4: The hardware implementation is very extensible. The number of input signals and applied
FIFOs and registers can be arbitrarily increased. The new structure is generated automatically based on
the configuration file. A larger bus width, as well as the sizes of FIFOs, registers and configuration cells
can also be implemented easily.

5.3 Evaluation

As concluded in the recent section, the monitoring system has met following requirements:

Resource friendliness When subtracting the TRBnet resource consumption on the chip, the
monitoring tool shows reasonable results. As a final conclusion inferred from table 5.2, it
seems that there can be much accomplished within 10 % of the large Xilinx chip resources.
The basic monitoring system containing 4 FIFOs and 4 registers should be able to run
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on any TRBnet chip. The DEMON system is therefore considered as lightweight and
resource friendly. A broad use of registers and BRAM FIFOs is encouraged. However, if
no Block RAMs are available, the system tends to become very expensive. In that case,
only a minimal setup containing few small FIFOs should be used. The design should
concentrate more on the registers.

Adaptability The system can be configured arbitrarily to suit any given detector. It can hold
all currently applied detector signals in relatively large buffers. The readout mechanisms
support the large variety of signals and handle them appropriately. The additional pres-
ence of control bits and configuration cells allow the system to adapt itself to any given
situation. The possibilities are open to the developers to implement their own, enhanced
algorithms inside the monitoring facility. Currently two operation modes of a FIFO are
implemented (standard and ringbuffer) and they suffice to acquire all detector signals ad-
equately. The global synchronization on all boards is achieved through different timer
domains, event IDs and timestamp modulation. Moreover, each board can hold a different
monitoring setup due to the orthogonal design and the applied ROM modules. Since only
raw data is monitored, the user can select the visualization method freely.

On the other hand, high adaptability implies that the user performs all the customizations
manually. Depending on the system, this step tends to get very time consuming.

Extensibility The system is absolutely scalable, supporting indefinitely many storage cells.
The FIFO sizes can be enlarged easily, as well as the internal bus width. Current version
contains some limitations which can be, however, continuously expanded. All the entities
are derived automatically from the configuration file. If the number of signals increases,
the multiplexers are extended accordingly, as well as the entire internal structure. The
ROM also contains enough free addresses to hold more than 112 entries (20×4 FIFO
properties + 32 register sizes).

Controlability On the hardware side, the monitoring system operates on its own. The hard-
ware can automatically perform some internal actions over the control port and the FIFOs
buffer signals with preset frequencies. On the client side however, the user can read out
the cells and write their configurations. The only way to control the FIFOs and change
their operating modes is over the configuration cells. They can be up to 32 bit in size. The
client additionally offers more functions. The user can group similar boards and read/con-
figure them collectively, as well as initiate reads in a threaded loop. The following data
visualization leans on the large EPICS libraries and provides a high degree of freedom.

Usability The hardware part first needs an appropriate configuration, before the entire system
can be used. The configuration process requires that the user understands the basic princi-
ples of storage cells and the internal bus. Every FIFO possesses many properties and they
all need to be set manually. To accelerate and facilitate the configuration process, many
constants are defined in the configuration file. After the main configuration, the user still
needs to link the detector signals to the corresponding ports. In the end, a visualization
scheme for each signal can be selected in the EPICS API.
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The final customization step is also the most arduous one. First, the EPICS database
has to be created to store all the monitoring signals. After that, each signal requires its
own visual component on the screen. Some signals may require additional calculation
algorithms, before they can be plotted or displayed. Altogether, much work is required
by the user. This is at the same time the largest drawback in such a generic design. The
system is extraordinarily adaptable and can be tuned to any desired operation, but the user
has to do all the work.

The entire system is running very stable. The TRBnet performance is very good in the smaller
test systems. Memory consumption of the server is sufficiently low. The server does not need
to store large values and thus operates very efficiently on the TRB Linux system. Even if all
TRBnet nodes are involved, the memory overhead should not exceed several megabytes. Every
instruction is handled separately for each client. Only after the server sends back the response
and empties its buffers, the next instruction can be executed. The only situation that should be
avoided is to start many clients in parallel and to start acquiring ROM information on all of them
at the same time. The memory could easily exceed the 128 MB on-board limit in that case.
However, since the malloc() function is used appropriately, even then no problems should occur.
The client should have access to much more RAM on the PC outside the TRBnet, therefore no
difficulties should be expected there either (even not when using many threads).

Despite the great outcome so far, there is still some room left for improvement. When in future
a more complete signal list can be acquired, the information on how to visualize each signal can
also be stored inside the ROM (encoded in the signal type). The EPICS GUI would then be
able to provide some core visualizations automatically, if needed. This step would significantly
reduce the administrated user effort.

One huge limitation of the monitoring system which results in resource dissipation is the
unified bus width. All FIFO- and register-cells are connected to the multiplexers and the input
interface over equally wide drivers3. Therefore, if some signals are smaller than the bus width,
the bus nevertheless drives many zeros through the system and wastes resources. There are
two different approaches to solve this matter, however none of them has been considered, since
they both require additional resources, so that the gain would not be noticeable in the end. One
way is to use more complex multiplexers and create each driver differently, the other is to use
many separate input ports with differing sizes in the input interface. The first proposal requires
registers in the multiplexers and some more complicated controls, while the second calls for
many additional multiplexers. Thus the bus width remains as it is.

With the proposed monitoring tool, digital hardware states can be acquired and visualized
with some user intervention. To reduce the necessity of manual intervention into the source
code, further work is required. More importantly, the current HADES setup is not completely
developed. The performance of the tool could change when it is used in an environment with
500 boards. Monitoring data is transported on the least prioritized channel and could be blocked
or delayed by triggers and event data. The laboratory tests are not sufficient, although they prove
the correctness of the monitoring facility.

3In this context, the driver denotes the VHDL driver signal, carrying the actual monitoring load. The driver is
the bus.
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5.4 Closing Remarks and Future Work

There is yet a lot to accomplish, until the first beam time and practical application. This thesis
provides the basis for a comprehensive detector monitoring facility. The design has aimed for
prolonged applicability. Therefore it can be adjusted to store any signal and visualize it in any
way the EPICS library permits. After the first experiment it is advisable to store the EPICS GUI
for further work. The user needs to do all the adjustments, but in EPICS it can be done relatively
fast and after a first skeleton application, it can be used as a template for further experiments.

Due to the large complexity of the EPICS API, no skeleton GUI could be created within
the scope of this work. There are many ways to create one, but this would require many fine
adjustments, so this is left to the end-user after more information about the experimental setup
can be acquired.

As a proposal for the future application, some basic monitoring signals should be added in an
internal signal library. The library could govern the monitoring signals and provide a method to
create the EPICS records in the database automatically. New signals from following experiments
should be added to the library, as well as their visualization components and settings. In this way,
a comprehensive particle detector monitoring framework can be realized providing core signal
information for future experiments.
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[Fro08] I. Fröhlich et al. A General Purpose Trigger and Readout Board for HADES and FAIR-
Experiments. IEEE Trans. Nucl. Sci., 55:59–66, 2008.
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A Explanation of ’DEMON config.vhd’

c o n s t a n t FIFO NUM : i n t e g e r range 0 to 20 := 8 ;
c o n s t a n t LOG FIFO : i n t e g e r range 1 to 5 := 3 ;
c o n s t a n t FIFO BUS WIDTH : i n t e g e r range 8 to 64 := 3 2 ;

c o n s t a n t REG NUM : i n t e g e r range 0 to 512 := 1 2 ;
c o n s t a n t LOG REGISTERS : i n t e g e r range 1 to 9 := 4 ;
c o n s t a n t REG BUS WIDTH : i n t e g e r range 2 to 64 := 6 4 ;

c o n s t a n t CFG SIZE : i n t e g e r range 4 to 32 := 4 ;

Listing A.1: The first three rows define the basic FIFO specifications. In the example,
8 FIFOs with 32 bit effective port width will be used. After that, the registers are
specified (in this case 12, with 64 bit bus width). The logarithm always needs to be
rounded upwards.

c o n s t a n t c BRAM16x1024 :
s t d l o g i c v e c t o r (7 downto 0) := ” 00100000 ” ;

c o n s t a n t c BRAM16x1024R :
s t d l o g i c v e c t o r (7 downto 0) := ” 00100001 ” ;

. . .

c o n s t a n t c LUT64x32 :
s t d l o g i c v e c t o r (7 downto 0) := ” 10110000 ” ;

c o n s t a n t c LUT64x32R :
s t d l o g i c v e c t o r (7 downto 0) := ” 10110001 ” ;

c o n s t a n t c NULL : s t d l o g i c v e c t o r (7 downto 0) := ” 00000000 ” ;

Listing A.2: All FIFO types are encoded, so they can be used as Strings inside the con-
figuration file (see listing A.4). The user should not change this part, unless providing
new FIFOs definitions.
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type c e l l g e n e r i c i s record
wid th : i n t e g e r range 1 to 256 ;
d e p t h : i n t e g e r range 1 to 16384 ;
l o g d e p t h : i n t e g e r range 1 to 1 4 ;
c o n t r o l b i t s : i n t e g e r range 0 to 8 ;
m o n i t o r i n g t y p e : s t d l o g i c v e c t o r (7 downto 0 ) ;
f r e q u e n c y : s t d l o g i c v e c t o r (7 downto 0 ) ;
t i m e r t y p e : s t d l o g i c v e c t o r (7 downto 0 ) ;
t i m e r r e s o l u t i o n : s t d l o g i c v e c t o r (7 downto 0 ) ;
t i m e s i z e : s t d l o g i c v e c t o r (7 downto 0 ) ;
d a t a s i z e : s t d l o g i c v e c t o r (7 downto 0 ) ;
e v e n t s i z e : s t d l o g i c v e c t o r (7 downto 0 ) ;

end record ;

type c e l l g e n e r i c s i s array (1 to 20) of c e l l g e n e r i c ;

type r e g i s t e r g e n e r i c i s record
wid th : i n t e g e r range 0 to 256 ;
c o n t r o l b i t s : i n t e g e r range 0 to 8 ;

end record ;

type r e g i s t e r g e n e r i c s i s array (1 to 32) of r e g i s t e r g e n e r i c ;

type c f g g e n e r i c i s record
i n i t : s t d l o g i c v e c t o r (CFG−1 downto 0 ) ;
number : i n t e g e r range 1 to 2 0 ;

end record ;

type c f g g e n e r i c s i s array (1 to 20) of c f g g e n e r i c ;

Listing A.3: The FIFO is defined as a VHDL record, nevertheless some properties still
have to be encoded binary (in the current version). Registers and the initial configuration
are defined in the same way. This part should not be modified.
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c o n s t a n t f i f o 1 : c e l l g e n e r i c :=
( 3 2 , 2∗∗1 1 , 1 1 , 4 , c BRAM32x2048R , ” 00000001 ” , ” 00000011 ” ,

” 00000011 ” , ” 00000100 ” , ” 00011010 ” , ” 00000010 ” ) ;
. . .

c o n s t a n t f i f o 2 0 : c e l l g e n e r i c :=
( 3 2 , 2∗∗1 1 , 1 1 , 4 , c BRAM16x2048 , ” 00000000 ” , ” 00000011 ” ,

” 00000011 ” , ” 00000100 ” , ” 00011010 ” , ” 00000010 ” ) ;

Listing A.4: After the definitions, the instantiation has to be performed. Every FIFO,
register and configuration has to be set individually. All values are written to each FIFO
in the right order (width, depth, log, ctrl, type, freq, timer, t res, t size, d size, e size).
All data is written to the ROM if the FIFO type ’c NULL’ or the register width ’0’ is not stated
(which stop the chain).

c o n s t a n t f i f o g e n e r i c s : c e l l g e n e r i c s :=
(

f i f o 1 , f i f o 2 , f i f o 3 , f i f o 4 , f i f o 5 ,
f i f o 6 , f i f o 7 , f i f o 8 , f i f o 9 , f i f o 1 0 ,
f i f o 1 1 , f i f o 1 2 , f i f o 1 3 , f i f o 1 4 , f i f o 1 5 ,
f i f o 1 6 , f i f o 1 7 , f i f o 1 8 , f i f o 1 9 , f i f o 2 0

) ;

c o n s t a n t r e g g e n e r i c s : r e g i s t e r g e n e r i c s :=
(

r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 ,
r11 , r12 , r13 , r14 , r15 , r16 , r17 , r18 ,
r19 , r20 , r21 , r22 , r23 , r24 , r25 , r26 ,
r27 , r28 , r29 , r30 , r31 , r32

) ;

c o n s t a n t c f g s : c f g g e n e r i c s :=
(

cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , cfg7 ,
cfg8 , cfg9 , cfg10 , cfg11 , cfg12 , cfg13 , cfg14 ,
cfg15 , cfg16 , cfg17 , cfg18 , cfg19 , c fg20

) ;

Listing A.5: After the values are set, they are kept inside the records and used to gen-
erate the entire architecture during the synthesis process. This fragment requires no
modification.
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B FIFO Frequency Map

f f (binary) Write Delay
0 00000000 10 ns
1 00000001 20 ns
2 00000010 40 ns
3 00000011 80 ns
4 00000100 160 ns
5 00000101 320 ns
6 00000110 0.64 µs
7 00000111 1.28 µs
8 00001000 2.56 µs
9 00001001 5.12 µs

10 00001010 10.24 µs
11 00001011 20.48 µs
12 00001100 40.96 µs
13 00001101 81.92 µs
14 00001110 163.84 µs
15 00001111 327.68 µs
16 00010000 0.655 ms
17 00010001 1.31 ms
18 00010010 2.62 ms
19 00010011 5.24 ms
20 00010100 10.48 ms
21 00010101 20.97 ms
22 00010110 41.94 ms
23 00010111 83.88 ms
24 00011000 167.77 ms

f f (binary) Write Delay
25 00011001 0.33 s
26 00011010 0.67 s
27 00011011 1.34 s
28 00011100 2.68 s
29 00011101 5.36 s
30 00011110 10.72 s
31 00011111 21.44 s
32 00100000 42.88 s
33 00100001 1.43 min
34 00100010 2.86 min
35 00100011 5.71 min
36 00100100 11.43 min
37 00100101 22.87 min
38 00100110 45.74 min
39 00100111 1.52 h
40 00101000 3.05 h
41 00101001 6.1 h
42 00101010 12.2 h
43 00101011 24.4 h
44 00101100 2.03 d
45 00101101 4.06 d
46 00101110 8.13 d
47 00101111 16.26 d
48 00110000 32.52 d
49 00110001 65.05 d

Table B.1: The FIFO frequency map. These frequencies can be set in order to achieve the desired write
delay.
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C Generate-Statement for the FIFOs

g e n f i f o s : f o r i in 1 to FIFO NUM g e n e r a t e
t he FIFO : d a t a c e l l

g e n e r i c map (
wid th => f i f o g e n e r i c s ( i ) . width ,
d e p t h => f i f o g e n e r i c s ( i ) . dep th ,
l o g d e p t h => f i f o g e n e r i c s ( i ) . l o g d e p t h ,
c o n t r o l b i t s => f i f o g e n e r i c s ( i ) . c o n t r o l b i t s ,
m o n i t o r i n g t y p e => f i f o g e n e r i c s ( i ) . m o n i t o r i n g t y p e ,
f r e q u e n c y => f i f o g e n e r i c s ( i ) . f r e q u e n c y ,
t i m e r t y p e => f i f o g e n e r i c s ( i ) . t i m e r t y p e ,
t i m e r r e s o l u t i o n => f i f o g e n e r i c s ( i ) . t i m e r r e s o l u t i o n ,
t i m e r s i z e => f i f o g e n e r i c s ( i ) . t i m e s i z e ,
d a t a s i z e => f i f o g e n e r i c s ( i ) . d a t a s i z e ,
e v e n t s i z e => f i f o g e n e r i c s ( i ) . e v e n t s i z e

)
port map (

CLK => CLK,
RESET => RESET ,
CLK EN => CLK EN ,
DATA IN => FIFO DATA IN ( ( i ∗FIFO BUS WIDTH)−1 downto

( i ∗FIFO BUS WIDTH)−FIFO BUS WIDTH ) ,
READ IN => c o m b i n e d f i f o r e a d ( i −1) ,
DATA OUT => c o m b i n e d f i f o d a t a ( ( i ∗ ( FIFO BUS WIDTH+1))−1

downto ( i ∗ ( FIFO BUS WIDTH+1))−(FIFO BUS WIDTH + 1 ) ) ,
READY OUT => c o m b i n e d f i f o d a t a r e a d y ( i −1) ,
NO MORE DATA OUT => c o m b i n e d f i f o n o m o r e d a t a ( i −1) ,
CONFIG IN => c o m b i n e d c f g d a t a o u t ( ( i ∗CFG SIZE)−1 downto

( i ∗CFG SIZE)−CFG SIZE ) ,
TIME IN => f i f o t i m e r b u s ( ( i ∗32)−1 downto ( i ∗32)−32) ,
EVT IN => EVENT NUMBER IN ,
CTRL IN => CTRL IN ( ( i ∗4)−1 downto ( i ∗4)−4 )

) ;
end g e n e r a t e ;

Listing C.1: The generics are mapped according to the configuration file. The port
DATA IN is decomposed and each ’FIFO BUS WIDTH’-wide portion connected to
the corresponding FIFO. The code for the register cells is very similar.
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g e n f i f o t i m e r b u s : f o r i in 1 to FIFO NUM g e n e r a t e
g e n f t i m e t y p e 1 : i f f i f o g e n e r i c s ( i ) . t i m e r t y p e = ” 00000001 ”
g e n e r a t e

f i f o t i m e r b u s ( ( i ∗32)−1 downto ( i ∗32)−32) <= GLOBAL TIME IN ;
end g e n e r a t e ;
g e n f t i m e t y p e 2 : i f f i f o g e n e r i c s ( i ) . t i m e r t y p e = ” 00000010 ”
g e n e r a t e

f i f o t i m e r b u s ( ( i ∗32)−25 downto 0) <= LOCAL TIME IN ;
f i f o t i m e r b u s ( ( i ∗32)−1 downto ( i ∗32)−24) <= dummy24 ;

end g e n e r a t e ;
g e n f t i m e t y p e 3 : i f f i f o g e n e r i c s ( i ) . t i m e r t y p e = ” 00000011 ”
g e n e r a t e

f i f o t i m e r b u s ( ( i ∗32)−1 downto ( i ∗32)−32)<= TRIGGER TIME IN ;
end g e n e r a t e ;

end g e n e r a t e ;

Listing C.2: The correct timer is connected according to the ’timer type’ from the config-
uration file.
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D Source Files

Name Description

CFG cell.vhd The simple configuration cell. It controls the FIFO state.

CFG MUX.vhd The multiplexer for the configuration cell address range.

data cell The generic FIFO cell. It contains a large number of predefined FIFOs
and the internal connection.

FIFO controller.vhd This entity regulates the FIFO writes and provides additional controls.

FIFO MUX.vhd The multiplexer for the FIFO address range.

monitoring unit.vhd The top entity containing all others. It generates the DEMON architecture
and the wiring.

register cell.vhd The register cell.

register MUX.vhd The multiplexer for the register address range.

ROM.vhd This entity generates the ROM contents based on the current configuration.
tcpserv.c The TCP/IP server source file and C header. It is able to start up the server
tcpserv.h and interpret user commands.

tcpclient.c The command-line TCP/IP client. It connects to the server and allows
tcpclient.h the user to gain access to the monitoring facility.
EPICS client.c The version of the monitoring client adapted to the EPICS API.

It contains additional process variables and callback functions, as well as
additional revised functions.

DEMON.db The EPICS database supporting the basic monitoring system.

Table D.1: All created source files are presented in this table.

78



Acknowledgments

As first I would like to say many thanks to my dear mother, Slavica Grsic and my entire family
for the support throughout my studies. Especially I thank my uncle Nikola Ćorković who knows
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