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Abstract

The High-Acceptance DiElectron Spectrometer (HADES) is installed at the
Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The phy-
sics program of HADES is focused on the properties of the light vector mesons
ρ, ω und Φ in nuclear matter. These mesons decay with a small branching
ratio into dileptons. The momentum reconstruction of these leptons allows to
determine some properties of the vector mesons.

The Kalman filter is a set of mathematical equations that allows to estimate
the internal state of a dynamic system perturbed by process noise. It is an
optimal estimator in a sense that it minimizes the variance of the estimation
error. Since its discovery in 1960 the Kalman filter has become a popular state
estimator and has been successfully applied in many different areas like satellite
navigation, weather forecast or estimation of battery charge.

An environment with multiple, ambiguous and fake measurements poses a
challenge to the Kalman filter as it does not include a mechanism to handle
competing measurements or reject measurements. The Deterministic Anneal-
ing filter is an extension of the Kalman filter that allows competition between
measurements and rejection of fake measurements.

A Kalman filter and Deterministic Annealing filter have been implemented
for future use in the track reconstruction software of the HADES experiment.
The performance of the algorithms has been studied using simulated Au+Au
reactions and compared to the current algorithm for momentum reconstruction.

Chapter 2 gives an overview of the HADES detector. The basics of the
Kalman filter and Deterministic Annealing filter are presented in chapter 4.
The adaptation of these methods for HADES is described in chatper 6. Details
about the software implementation can be found in chapter 7. The results of
the simulation studies are presented in chapter 8.
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Chapter 1

Introduction

1.1 The Physics Program of HADES

The HADES detector is installed at the heavy-ion synchrotron SIS18 1 at the
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt. Its physics pro-
gram is mainly focused on research about the properties of hadrons when em-
bedded into hot and dense nuclear matter. Additional research topics include
the studies of vector meson-nucleon coupling strengths, the electromagnetic form
factor of the nucleon in the time-like region and the validity of the Vector Meson
Dominance model [Gal09].

Heavy-ion collisions like C+C or Au+Au at energies of 1–2AGeV produce a
reaction volume of high density for the short time period of up to 10 fm/c. The-
oretical models based on Quantum Chromo Dynamics predict modifications in
the properties of hadrons under such conditions. The light vector mesons ρ, ω
und Φ are especially suited for such investigations. The lifetime of these mesons
is comparable to that of the duration of the compression phase produced during
heavy ion collisions. They decay with a small branching ratio into dileptons
which are not subject to the strong force and can thus leave the reaction zone
unobstructed. Reconstructing the momentum of these leptons allows to deter-
mine some properties of the vector mesons like for example their invariant mass
distribution in the hot, dense nuclear matter.

The branching ratio of the decays into dileptons is merely 10−4 to 10−5. In
order to do dilepton spectroscopy a detector should have:

• a high geometric acceptance to indentify e+e− pairs,

• the capability to process high data rates at high beam intensities,

• a high invariant-mass resolution of a few percent in the mass range of the
ρ and ω mesons is required to distinguish in-medium effects [Mar05, p.8].

The HADES detector has been designed to meet these requirements.
1Schwerionen Synchrotron (Heavy Ion Synchrotron)
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1.2 Track Reconstruction

The track reconstruction at HADES currently consists of the following steps:

1. Track candidate search and cluster finding

2. Segment fitting

3. Momentum reconstruction

4. Particle identification.

More details about the track reconstruction procedure can be found in chap-
ter 3. The current algorithm for the final momentum reconstruction has been
in use since 2004. The goal of this work is to study if the Kalman filter and De-
terministic Annealing Filter can further improve the momentum reconstruction.
A disadvantage of the current reconstruction method is that the segment fit ne-
glects the residual magnetic field in the multi-wire drift chambers (MDCs) and
uses a straight line model which is not accurate for particles with low momenta.

The Kalman filter is suitable for efficient track reconstruction at high event
rates and is a promising method to improve the aforementioned weaknesses in
the current tracking software. In addition to the magnetic field present in the
MDCs it takes multiple scattering and energy loss into account which should
result in an improved momentum resolution for particles with momenta of less
than 250MeV/c. An additional goal is to obtain a better χ2 normalization, so
that the χ2 value is a better measurement for reconstruction quality. No large
matrices have to be inverted in the Kalman filter and the computational effort
increases only linearly with the number of measurements. The anticipated gain
in computing time is also an important aspect in regard to the planned analysis
of heavy-ion collisions like Au+Au and the occuring high particle multiplicities.

The Kalman filter optimizes the variances of the estimation error for linear
systems. In the case of nonlinear systems like the movement of a charged particle
in a magnetic field the system model has to be linearized. This is a possible
drawback. However, the linearization needs to be valid over short ranges only.

To avoid systematics from the segment fitter the Kalman filter has been
adapted to work with the drift time information from the drift chambers directly.
To fake hits and competition between measurements resolve an extension of the
Kalman filter, the Deterministic Annealing Filter, is used.

10



Chapter 2

The HADES Detector

The HADES detector is divided into six equal sectors of trapezoidal shape
aligned symmetrically around the beam axis. It covers an acceptance of 18◦-
85◦ over the polar angle. The azimuthal acceptance is limited to 85% due to
the magnetic coils. The detector is depicted in figure 2.1. It consists of these
components [HAD09, B+09]:

1. START and VETO detectors for reaction time measurements,

2. RICH and META detectors for particle identification,

3. a tracking system with multi-wire drift chambers (MDCs) and magnetic
coils and

4. a forward wall hodoscope to detect spectator protons and characterize
events.

2.1 START and VETO Detectors

START and VETO each consist of 8 diamond strips detectors. With a thickness
of 100µm, multiple scattering and production of secondary particle are kept low.
The dectectors are placed in front of and behind the target, respectively. They
provide a start time for the time of flight measurement of the particles between
the target and TOF detectors. Additionally, the VETO detector helps to reject
events.

Using the START detector is not possible for high-intensity (≥ 107Hz pro-
ton beams since the induced secondary particles prevent a stable RICH opera-
tion. Hence, there is no start time reference for tracks in the same event and
the difference in time of flight with respect to the fastest particle is measured
instead.
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(a)

(b)

Figure 2.1: A 3-D explosion view and a side view schematic of the HADES
detector.
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2.2 Particle Identification

2.2.1 The RICH Detector

Figure 2.2: Schematics of the RICH detector [Tar10].

The particles produced at the target during a heavy-ion collision first reach
the Ring Imaging CHerenkov (RICH, fig. 2.2) detector. They pass through a
radiator gas with refraction index n. If the particle’s velocity β is larger than
the speed of light c/n in that medium then it emits Cherekov light. The light
cone is centred around the particle’s trajectory and has an opening angle of
cos ΘC = 1/(β·n). The photons are reflected onto a photosensitive detector by a
spherical carbon fibre mirror and focused to rings.

The radiator gas used is perfluorobutane (C4F10) which has a refraction
index of n = 1.00151. Only particles with a relativistic velocity of

β ≥ 1/n ' 0.9985

which corresponds to a Lorentz factor of

γ ≥
√

n2

n2 − 1
' 18.2

can be detected. Hence, the opening angle ΘC of the light cone is nearly con-
stant. The electrons and positrons produced during heavy-ion collisions at the
relevant kinetic energies of 1–2AGeV exceed the threshold while the hadrons
stay below the threshold of the RICH detector reaching only up to β = 0.95.
This allows a discrimination for hadrons and electrons/positrons [Z+99].

13



2.2.2 The META Detector

The Multiplicity and Electron Trigger Array (META) is located behind the
drift chambers as seen from the target and consists of time-of-f light scintillator
bars (TOF), the Resistive Plate Chamber (RPC) wall and electromagnetic
PreShower detector. The main tasks of the META detector are:

• Providing charged particle multiplicity for the first level trigger.

• Measuring the time-of-flight and energy loss which is used for particle
identification.

• Reconstructing the position of charged particles which are correlated with
reconstructed tracks and can be spatially correlated with the RICH rings
and META hits.

The TOF Wall

The TOF wall covers the large polar angles between 44◦ and 88◦. Each of the six
sectors contains 8 modules with a set of 8 scintillator rods, respectively. Charged
particles traversing the detector may interact with the scintillating material that
then absorbs part of the particles’ energy. The energy is reemitted in the form
of photons which are then collected by photo-multiplier tubes (PMTs) from
both sides of a scintillator rod. Electric signals are generated in the PMTs
allowing measurements of the arrival time and the amplitude of the light signal.
Let aleft and aright denote the the light signal’s amplitudes at each end of a
scintillator rod. Furthermore, let tleft and tright denote the difference between
the time given by the START detector and the arrival time of the light signals
in the TOF rod. With these measurements it is possible to extract the particle
position x along the rod, its time-of-flight ttof and deposited energy ∆E.:

x =
1
2

(tleft − tright) · Vg (2.1)

ttof =
1
2

(
tleft + tright −

L

Vg

)
(2.2)

∆E ∝
√
aleft · aright · e

L
λat (2.3)

where Vg is the group velocity of light in the scintillator rod, λat its attenuation
length and L the length of the rod.

Signals from the PMTs are processed by a constant fraction discriminator
(CFD). By performing an analog sum of the CFD signals it is possible to trigger
on the charged-particle multiplicity. [A+02]

The RPC wall

A Resistive Plate Counter is a gas detector that consists of two parallel electrode
plates. A electric field is applied between the plates. The gap between the
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plates is filled with a counter gas that provides electrons by ionization and
a quencher gas that absorbs photons. Charged particles trigger an electron
avalanche by the same process as in drift chambers described in chapter 2.3.2.
This causes a discharge. Due to the high resistivity of the electrodes and the
photon absorbing quencher gas the discharge can’t spread through the whole
gas. Thus, the electric field is switched off in a limited area where the discharge
occured [SC81].

In multi-gap RPCs the gas gap is divided by additional anode-cathode plates.
This combines the good time resolution of a narrow gap with the higer rate
capabilities and lower power dissipation of a wide gap [Z+96].

The HADES detector utilizes a multi-gap RPC wall [FSW00] that covers the
small polar angles between 18◦ and 44◦. In 2009, the RPC wall has replaced
the TOFINO detector for time-of-flight measurements since the multiplicity in
systems like Au+Au called for a detector with higher granularity [B+09].

The PreShower Detector

The momenta of the hadrons and the hit denisities in the detectors are higher
at low polar angles making the discrimination of leptons and hadrons more
difficult. The PreShower detector is located behind the RPC wall. The positrons
and electrons tracked with HADES loose energy mainly due to radiation when
passing through material. If the emitted photons have an energy of at least
2me = 1022 keV/c2 than e+/e− pairs can be generated which again loose energy
due to radiation. The result is a cascading electromagnetic shower. Radiation
loss plays little role for hadrons in the SIS18 energy regime. Therefore the
PreShower detector offers another method to distinguish hadrons from positrons
and electrons in addition to the RICH detector [B+04].

2.3 The Tracking System

A magnetic field deflects charged particles, so that their momentum can be
reconstructed from the curvature of their trajectory. The momentum transfer
∆pt transverse to the particle’s trajectory only depends on the magnetic field
B it traverses:

∆pt =
∫
dp =

∫
FLdt =

∫
q · (v ×B) dt = q ·

∫
ds×B. (2.4)

The momentum and momentum transfer vectors are added. The resulting
deflection angle is larger for particles with low momenta than for particles with
high momenta. In order to calculate the momentum transfer, information about
the magnetic field and the particles’ position and direction in front of and behind
the magnet is needed.
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Figure 2.3: Left: Side view of the magnet. The lower half shows a coil inside
its chamber. Right: Back view of the magnet. The coil chambers are located
at the sector borders [Tar10].

2.3.1 The Magnet

The purpose of the magnet (fig. 2.3) is to provide a sufficient momentum transfer
to allow momentum reconstruction with a resolution of σp/p = 1.5–2% for
electrons. Particles with momenta between 0.1GeV/c and 2GeV/c should be
accepted over a large polar angle range of 18◦–85◦ with nearly full azimuthal
coverage. This calls for a compact design of the magnetic coils.

The detector has been designed to keep the detector material mostly outside
of the magnetic field thereby minimizing the effects of multiple scattering and
achieving a better momentum resolution. A weak deflection of positrons and
electrons in the radiator gas of the RICH ensures that the emitted photons are
projected onto rings. Additionally, the time resolution of the photo multipliers
used in the META detector would deteriorate in a magnetic field. A high
magnetic field can also lead to problems inside the MDCs if the drifting electrons
and ions are moving on highly curved trajectories. Therfore, the magnetic field
strength needs to be high between the outer and inner MDCs to deflect the
particles and be kept low in the detector regions.

The HADES magnet consists of six superconducting coils algined symmet-
rically around the beam axis. Each coil is separately contained in its individual
coil case. The compact construction leads to little loss in geometrical accep-
tance. Figure 2.4 shows the highly inhomogeneous magnetic field at azimuthal
angles of Φ = 0◦ (the plane at the sector border dividing the coils) and 30◦

(the mid plane of a sector). The maximum value is seen at the centre of a
sector (Φ = 30◦) and small polar angles. The magnet with its toroidal field
geometry has been designed so that particles are mainly deflected in polar di-
rections [M+04].
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(a) Φ = 0◦ (b) Φ = 30◦

Figure 2.4: The magnetic field along the beam axis (z-coordinate) and perpen-
dicular to the beam axis at the border of a sector (Φ = 0◦) and middle of a
sector (Φ = 30◦) [HAD09].

2.3.2 The Multi-Wire Drift Chambers

The position of the particles are tracked via four planes of multi-wire drift
chambers (MDCs I-IV) in each sector. Two MDC planes (MDC planes I and II)
are placed in front of and two behind (planes III and MDC IV) the magnetic field
in order to determine the direction of the particle at these points (fig. 2.5). Each
plane is made of six trapezoidal layers. The signal and field wires in each layer
are oriented in different angles (±0◦,±20◦,±40◦ as can be seen in figure 2.6a)
to cope with left-and-right ambiguities in the high-multiplicity environment of
a heavy-ion collision.

The wires inside the chambers form elongated drift cells. Such a drift cell
is comprised of several cathode and field wires plus a sense wire in its centre
(fig. 2.6b). Each layer consists of about 1100 such cells. Their size varies with
each layer to keep the granularity constant. In the innermost chamber (MDC
I), the size of the cells is 5× 5mm2 while in MDC IV it is 14× 10mm2.

A drift chamber has a spatial resolution between 70 and 110µm. It is higher
in polar direction which is also the main direction of the momentum trans-
fer [Mar05].

Drift Chamber Physics

A drift chamber is a gas detector with an electric field present. When charged
particles enter an MDC there are three important processes taking place:

1. Ionization of the gas molecules.

2. Drift of the ions and electrons in the electric field.
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(a) Schematic view of the position of the
four MDC planes with respect to the mag-
netic coils. The names of the institutes
where the chambers were fabricated are in-
dicated [HAD09].

(b) Knowing the positions in front of (points
A and B) and behind the magnetic field
(points C and D) the deflection angle and
momentum transfer of the particle due to
the magnet field can be determined [C.L00].

Figure 2.5: The HADES tracking system.

(a) The different wire orientations in the
MDC layers allow for the reconstruction of
space points from fired wire clusters (see
chapter 3). The wires of the two ±0◦

layers are shifted by half of a drift cell
width [Mar05]. The stereo angles were cho-
sen for maximum spatial resolution in the
direction of the particle deflection [HAD09].

(b) Shown is the layout of a drift cell marked
by the yellow square in MDC II. The cath-
ode (blue) and field wires (green) form the
borders. A sense wire (red dot) is located in
the centre of the drift cell [Mar05].

Figure 2.6: Wire orientations (a) of an MDC plane and layout of the geometry
of a drift cell (b).
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3. Gas amplification (electron avalanche) near the sense wires.

Charged particles passing through a gas may interact electromagnetically
with the gas molecules and loose energy during this process. The important
form of energy loss for drift chambers is by ionization where the particle interacts
with the electrons of the gas molecules and transfers enough of its kinetic energy
so that one or more electrons are no longer bound to the gas molecules. This
is called primary ionization. If these electrons have sufficient energy they can
ionize more molecules (secondary ionization). The ionization is statistically
distributed along the particle’s path resulting in clusters of electron and ion
clouds.

The cathode and field wires enclose the sense wire in an electric field. The
sense wire is on a positive potential. The electrons are accelerated along the
electric field lines towards the sense wire in the drift cell while the ions drift to-
wards the field and cathode wires. Since an electron’s mass is much smaller and
its mean free path length larger compared to an ion the electrons have a higher
velocity. Due to collisions with gas molecules the electrons are decelerated. The
drift velocity is therefore constantly changing. However, on a macroscopic scale
a mean drift velocity can be observed.

The electric field is strongest near the sense wire where the amplification
sets in. The number of free electrons N grows exponentially in this avalanche
by

N = N0 · eαx (2.5)

where N0 is the amount of electrons from the primary ionization, α is the
Townsend coefficient and x is the distance the avalanche has progressed. The
Townsend coefficient is the inverse of the mean free path length λ of an electron
until it ionizes a gas molecule:

α ≡ 1
λ
. (2.6)

Its value depends on the strength of the electric field and the utilized gases.
The electron clouds generate a signal on the sense wire which starts a time

measurement. The stop signal is deduced from an external detector e.g. a
delayed trigger of the START detector. Since this signal is the same for all drift
cells it is also called a common stop signal. An 8 channel Amplifier Shaper
Discriminator (ASD8) processes the measurements of eight drift cells. The
ASD8 first amplifies the signal. The slower ion clouds induce a signal on the
cathode and field wires that also contribute to the measurement. Since the
ions are much slower than the electrons this results in a long tail in the signal.
The shaper eliminates these ion tails. Finally, the discriminator generates a
nearly rectangular logical signal of a width equivalent to the time that the
signal exceeded a set threshold voltage and transfers this signal to a Time to
Digital Converter (TDC). The TDC then measures the time between the logical
signal of the ASD8 and the common stop signal.
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The choice of a gas mixture for the MDC’s is a non-trivial task. The gas
mixture must allow a stable operation of the MDC’s with a high efficiency,
provide a good time resolution, have a large radiation length to reduce multiple
scattering and minimize ageing of the chambers.

If the free electrons recombine with ions or attach to gas molecules then
they are lost before they can be amplified. Noble gases like Argon and Helium
are chemically inert and have a low electronegativiy. Electron capture can thus
be avoided with these gases. Argon is superior to Helium regarding primary
ionization while Helium with its lower mass and higher radiation length doesn’t
cause as much multiple scattering. The concentration of highly electronegative
gases like oxygen or water vapour needs to be kept low because oxygen can easily
capture electrons in low electrical fields and water vapour in high electrical fields.
Water vapour also influences the drift velocity of the electrons which negatively
affects the position resolution of the drift chamber.

Photons produced by recombination processes can cause ionization and av-
alanches further away from the original particle’s trajectory. To avoid such a
delocalization of the signal a quencher gas is added that absorbs the photons.
Typical quenchers are organic compounds like Methane CH4, Ethane C2H6 or
iso-Butane C4H10. These gases transform the energy of the absorbed photons
only in rotation and vibration energy. While they reduce the gas amplification
they are needed for a stable operation of the drift chamber.

MDC plane I is currently filled with a 70 : 30 mixture of Argon and carbon
dioxide. The other planes contain 84% Argon and 16% iso-Butane.

2.4 The Forward Wall Hodoscope

The forward wall consists of 287 scintillator cells connected to photo-multipliers.
During the deuteron+proton beam experiment in May 2007, the forward wall
has been successfully used to register spectator protons which allowed for a
discrimination between the p+p and the n+p collisions. The forward wall was
located 7 metres downstream behind the target and covered polar angles be-
tween 0.33◦ and 7.17◦ [L+09].
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Chapter 3

Track Reconstruction in
HADES

Track reconstruction in HADES is done in the following steps [HAD09]:

Track canidate search: On its own, a measurement of a single wire in a drift
cell does not yield a position of track. Only when using wire measurements
of several layers with different wire orientations information about track
position and direction can be inferred. The wires that generated a signal
are projected onto a common plane. For the inner chambers, the plane is
chosen so that the drift cells projected on this plane are roughly of equal
size. In case of the outer chambers with coplanar geometry, the centre
plane of two outer chambers serves as the projection plane. The fired wires
projected onto the planes may cross on the plane forming a local maximum
as shown in fig. 3.1. If enough wires contributed to the maximum then it
is accepted as a wire cluster. High thresholds for the required number of
wires in a maximum reduce the efficiency of the algorithm finding the wire
clusters. On the other hand, low thresholds result in more fake clusters
due to randomly crossing wires. The threshold is computed dynamically
for each event depending on the amount of fired wires.

The target position and the location of the maximum in the inner projec-
tion plane then define a straight track segment in space. The deflection
of the particle in the magnetic field is approximated by a momentum kick
on a virtual plane. The intersection of the inner track segment with the
kick plane and a wire cluster on the outer projection plane form another
track segment, the outer track segment. This matching of inner and outer
segments depicted in fig 3.2 define a track candidate.
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Figure 3.1: Left: The fired wires are projected onto a common plane and form
local maxima at the intersection points. Right: A cluster is defined by a suffi-
cient amount of crossing wires [HAD09].

The spatial resolution of the candidate search for the inner segment is
σx = 0.5mm and σy = 0.16mm. In case of the outer segment it is
σx = 1.6mm and σy = 0.46mm [Mar11a].

Segment fit: The precision of the candidates’ position is further improved by
the segment fit. This requires converting the measured drift times into a
distance to the sense wires in a drift cell (also see chapter 6.3.2). The space
coordinates of the track are then fitted to a track model. The segment
fitter computes four space points each located on a virtual plane in the
middle of a module. The segment fit improves the position resolution to
0.2mm in x-direction and 0.1mm in y-direction.

Particle identification: Inner track segments are matched with rings in the
RICH. Outer track segments are matched with the META detectors.
Matched rings in the RICH detector are used to identify leptons.

Momentum estimation using a spline: The four points computed by the
segment fit are interpolated with a cubic spline. The goal of a spline is to
calculate continuous interpolation functions over intervals. The intervals
are defined by a set of supporting points. Higher order splines addition-
ally require continuous derivatives of higher order. For example, cubic
splines additionally require continuous first and second order derivatives,
both within the intervals and at its borders. In the HADES reconstruction
software, a fifth order spline is used. This method provides a first esti-
mate of the particle momentum using the matched inner and outer track
segments. The relative momentum resolution σp/p of the method obtained
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Figure 3.2: Principle of the track candidate search finding an inner and outer
track segment. Only one MDC layer per module is shown [HAD09].

from simulations ranges from 1.5% to 4.5% for 0.15GeV/c electrons in the
Θ region of 20◦ to 80◦ and decreases to values ranging from 1% to 2.8%
for 1.4GeV/c electrons in the given angular region [HAD09].

Momentum reconstruction via a Runge-Kutta method: This step iter-
atively optimizes the position and direction estimates from the segment
fitter and the momentum estimation from the spline method. A fourth
order Runge-Kutta scheme is used to numerically solve the equation of
motion of a charged particle in the inhomogeneous magnetic field.

Particle identification: Time-of-flight measurements in the TOF/RPC and
energy loss in the MDCs supplement partcicle identification. Leptons are
identified by rings in the RICH and an electromagnetic shower in the
Pre-Shower detector.
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Chapter 4

State Estimation with the
Kalman Filter

4.1 Definitions

Many processes can be described by state-space systems. Given a mathematical
model of the process and the internal state of the system at a time it is possible to
predict how the system will evolve over time. A continuous-time, deterministic
linear system can be defined by the following two equations:

ẋ (t) = Fx (t) +Gu (t) +w (t) (4.1)
m (t) = Hx (t) + v (t) . (4.2)

The system equation 4.1 specifies the evolution of the state vector x (t) over
time t. The state vector is a collection of s state variables x1, . . . xs that fully
describes the internal state of the system at a time t. The s–dimensional domain
of the state vector is called the state space of the system. Since the state is a
function of time it can be referred to as a trajectory. The known vector u is
called the control or input vector, the matrix F is the system or propagator
matrix and G the input matrix. The system may be subject to random process
noise w.

While the full state of the system is usually hidden from observers one gets
measurable output m. The output matrix H is also called the projector matrix
since it projects the unknown state variables x onto a measurement vector.
The measurement equation 4.2 describes how a measurement is extracted from
the state vector. The process noise w and measurement noise v are known
statistically. Let r be the dimension of the measurement vector and s the
dimension of the state vector then H must be an r × s-matrix.

For example when tracking a charged particle in a magnetic field then the
position and momentum of the particle would fully describe the state of the
particle. The magnetic field that the particle traverses is the controllable input.
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Detectors give position information at different times. With this knowledge
it is possible to estimate the particle momentum that was hidden from direct
observation.

Often, only the knowledge of the system state at a discrete set of times is
relevant. Equations 4.1 and 4.2 for a continuous-time system can be transformed
into a discrete-time system:

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1 (4.3)
mk = Hkxk + vk (4.4)

where k is the index of the time.
The motion of a charged particle in a magnetic field is a nonlinear process like

most real processes. Nonlinear systems can be approximated as linear systems
taking advantage of the well-understood mathematics for linear systems.

Only the variances σ2 of the the process noise w and the measurement noise
v are known. The covariance of two random scalar variables x1 and x2 with
mean values x̄1 and x̄2 is defined by the expectation value

Cx1x2 ≡ σ2
x1x2

≡ E [(x1 − x̄1) (x2 − x̄2)] . (4.5)

In case of a vector x = (x1, . . . , xs)
T of random variables the covariance matrix

is

C ≡ E
[
(x− x̄) (x− x̄)T

]
. (4.6)

Since Cx1x2 = Cx2x1 a covariance matrix is symmetric. Additionally it is positive
semi-definite since for any s–dimensional column vector z we have

zTCz = zTE
[
(x− x̄) (x− x̄)T

]
z

= E
[
zT (x− x̄) (x− x̄)T z

]
= E

[(
zT (x− x̄)

)2]
≥ 0 (4.7)

The diagonal elements of the covariance matrix are the variances σ2
xi of the

random variable xi. The off-diagonal elements describe correlations between
the components of the vector x. The correlation of two random variables x1

and x2 is

Rx1x2 = E (x1x2) . (4.8)

The two variables are called uncorrelated if Rx1x2 = E (x1)E (x2), i.e. the
element Cx1x2 of the covariance matrix is zero. A random variable may change
with an independent variable t which could be time, for example. Noise is called
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white if x(t1) and x(t2) are uncorrelated for all t1 6= t2. Otherwise it is called
coloured noise.

The Kalman filter is optimal for Gaussian, zero-mean, uncorrelated and
white process noise w and measurement noise v. The Kalman filter may still be
used or modified for different kind of noise [Sim06, chapters 5.2 and 7]. The co-
variance matrices are named Q for the process noise and V for the measurement
noise:

Qk ≡ wkw
T
k (4.9)

Vk ≡ vkvTk (4.10)

4.2 The Kalman Filter

The Kalman filter in its original form [Kal60] was proposed for linear systems.
For its first application in the NASA Apollo program [MS85] the Kalman filter
was adapted for nonlinear systems. The principle of the Kalman filter is outlined
in figure 4.1. An estimate for the initial state vector x0 needs to be made.
The initial covariance matrix C0 represents the estimation error of x0. The
covariance matrix should be filled with appropriate values. Assuming too small
errors will not give the Kalman filter enough freedom to update the state vectors
while too large errors can lead to numerical instability and a divergence of the
filter.

The core of the Kalman filter is the interplay between the prediction and
filter steps. The prediction propagates the track state and covariance matrix ac-
cording to the system equation into the future. The prediction is then corrected
in the filter step by processing the real measurement. This process is iteratively
repeated for all measurements k = {1 . . . N}. The smoother goes back through
all filtered states and further improves them by using all the information col-
lected in the previous prediction and filter phases.

Thus, the prediction makes an estimate of the future state of the system.
The filter step estimates the system state in the present while the smoother
allows to estimate the state of the system in the past.

4.2.1 The Linear Kalman Filter

A linear discrete-time system is given by equations 4.3 and 4.4. The system
equation 4.3 is used to propagate the estimate of the mean state vector xk−1

from time k − 1 to time k. The expected state vector xk−1
k at time k then is

xk−1
k = Fk−1xk−1 +Gk−1uk−1. (4.11)

The subindex denotes that xk−1
k is the state esimate at time k. The superindex

denotes that k − 1 measurements have been processed so far. For simplicity
xkk ≡ xk is written. Unlike 4.3 there is no process noise in this equation since
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Initialization
Initial estimate of state vector x0

and covariance matrix C0.

Initialization
Initial estimate of state vector x0

and covariance matrix C0.

Prediction (time update)
Transport state vector x

k-1
and 

covariance Ck-1 to time k.

Prediction (time update)
Transport state vector x

k-1
and 

covariance Ck-1 to time k.

Filter (measurement update)
Correct predictions by taking the 
measurement mk into account.

Filter (measurement update)
Correct predictions by taking the 
measurement mk into account.

k = { 1, .., n }

Smooth Backwards
Update filtered state vectors xk and covariance 
matrices Ck using all the collected information.

Smooth Backwards
Update filtered state vectors xk and covariance 
matrices Ck using all the collected information.

Figure 4.1: Starting with initial values the Kalman filter propagates the state
vector x through time and then improves the prediction by processing the mea-
surement in the filter step. This is repeated for all measurements. The smoother
goes back through all filtered states and further improves them by using all the
collected information.

only mean values of the state are propagated. This transports the state vector
from time k − 1 to k. The covariance matrix at time k would be

Ck−1
k = E

[(
x̃k − xk−1

k

) (
x̃k − xk−1

k

)T ]
.

The true state x̃k is propagated with the system equation 4.3:

Ck−1
k = E

[(
Fk−1x̃k−1 +Gk−1uk−1 +wk−1 − xk−1

k

)
· (. . . )T

]
.

Substituting the expected state xk−1
k with 4.11 yields

Ck−1
k = E

[
(Fk−1 (x̃k−1 − xk−1) +wk−1) (. . . )T

]
= E

[
Fk−1 (x̃k−1 − xk−1) (x̃k−1 − xk−1)T FTk−1 +wk−1w

T
k−1+

Fk−1 (x̃k−1 − xk−1)wT
k−1 +wk−1 (x̃k−1 − xk−1)FTk−1

]
. (4.12)

The expectation value of (x̃k−1 − xk−1) (. . . )T is the covariance at the previous
time k − 1. Since the process noise wk−1 is uncorrelated with (x̃k−1 − xk−1)
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and zero-mean the resulting covariance is:

Ck−1
k = Fk−1Ck−1F

T
k−1 +Qk−1. (4.13)

The two equations 4.11 and 4.13 are also called the time-update equations. The
update of the state in the filter step is done with

xk = xk−1
k +Kk

(
mk −Hkx

k−1
k

)
. (4.14)

The quantity
(
mk −Hkx

k−1
k

)
is called the innovation or correction term. It

is the residual of the real measurement mk and the expected measurement
Hkx

k−1
k which is obtained from the measurement equation 4.4. The matrix Kk

is called the Kalman gain matrix and represents a measurement by how much
the innovation improves the expected state vector. If either the innovation or
the gain matrix are zero then the measurement has no effect on the predicted
state.

The gain matrix is chosen so that it is optimal in the sense that the sum Jk
of the variances of the estimation error is minimized:

Jk = E
[
(x̃1 − xk,1)2

]
+ · · ·+ E

[
(x̃s − xk,s)2

]
= E

[
‖x̃− xk‖22

]
= E

[
(x̃− xk)T (x̃− xk)

]
= E [Tr (x̃− xk)]
= Tr Ck

The covariance matrix Ck of the filtered state can be derived by first using
equation 4.14 in the estimation error x̃− xk and then calculate its expectation
value. Together with the definition 4.6 of a covariance a formula for Ck can be
obtained. Finally, solving ∂Jk/∂Kk yields the solution of the optimal gain matrix
Kk. Detailed derivations can be found in [Sim06, chapters 3 and 5] and [Fuj].
One formulation for the covariance Ck and Kalman gain Kk is:

Kk = Ck−1
k HT

k

(
HkC

k−1
k HT

k + Vk
)−1

(4.15a)

Ck = (I −KkHk)Ck−1
k (4.15b)

As the estimation error from the prediction Ck−1
k and thereby also the gain

matrix Kk approaches zero the Kalman filter will weight the predicted state
xk−1
k more heavily than the innovation. On the other hand the filter will weight

the innovation more heavily if the measurement error covariance Vk approaches
zero since the Kalman gain then becomes

lim
V→0

Kk → H−1
k .

28



Smoothing

Due to the recursive nature of the Kalman filter approach the computed state
vector xk is based on the k measurements collected so far. It is unaffected
by subsequent estimates. A smoother allows to further improve this estimate
using information from any subsequent measurements as well. Described here
is the smoother by Rauch Tung and Striebel (RTS smoother) [RTS65]. This
algorithm is a fixed-interval type smoother. It is useful when a fixed amount of
measurements m1, . . . ,mn is available and an estimate is desired for all times
k ∈ {1, . . . , n}.

First the Kalman filter is run on all n measurements. The final estimate
xn from the Kalman filter coincides with smoothing. Then the estimates with
k < n are smoothed in the reverse order using the following equations:

xnk = xk +Ak
(
xnk+1 − xkk+1

)
(4.16a)

Ak = CkF
T
k

(
Ckk+1

)−1
(4.16b)

Cnk = Ck +Ak
(
Cnk+1 − Ckk+1

)
ATk . (4.16c)

The smoothed state xnk+1 and its covariance Cnk+1 at time k + 1 are known
from the previous iteration. The propagator matrix Fk and state xkk+1 with
the respective covariance Ckk+1 are known from the prediction from k to the
subsequent time point k + 1. The state to improve is the estimate xk of the
Kalman filter at time k.

The derivation of the RTS smoother can be found in [Fuj] and [Sim06, chap-
ter 9.4.2.].

Inverse Kalman Filter

After the Kalman filter and smoother is done it is possible to exclude a mea-
surement in retrospect. The inverse Kalman filter allows to efficiently remove
the measurement mk from the smoothed estimate xnk . This can be used to find
outliers or to check detector alignment [Frü87].

xn∗k = xnk +Kn∗
k (mk −Hkx

n
k ) (4.17a)

Kn∗
k = CnkH

T
k

(
−Vk +HkC

n
kH

T
k

)−1
(4.17b)

Cn∗k = (I −Kn∗
k Hk)Cnk

=
[
(Cnk )−1 −HT

k (Vk)−1
Hk

]−1

. (4.17c)

4.2.2 The Extended Kalman Filter

The Kalman filter described in 4.2.1 is optimal only for linear systems. The
extended Kalman filter is a modification for estimation of nonlinear systems. It
is no longer optimal, but provides good results if the system is approximately

29



linear over short ranges. In general a nonlinear system can be described by the
following system and measurement equations:

xk = fk−1 (xk−1,uk−1) +wk (4.18)
mk = hk (xk) + vk (4.19)

To derive the extended Kalman filter the above equations are linearized around
a nominal trajectory by a Taylor expansion. The Jacobians of fk and hk are
used as the propagator matrix Fk and projection matrix Hk. The result is called
the linearized Kalman filter. To keep the linearization error small the nominal
trajectory has to be close to the real trajectory. For example, when estimating
the flight of an aircraft the nominal trajectory could be the planned flight path.
When tracking charged particles through a magnetic field a different solution
has to be found: The idea of the extended Kalman filter is to use the state
estimate as the nominal trajectory. The equations for the prediction step then
are [Sim06, chapter 13]

xk−1
k = fk−1 (xk−1, uk−1) (4.20a)

Ck−1
k = Fk−1Ck−1F

T
k−1 +Qk−1 (4.20b)

Fk−1 =
∂fk−1

∂x

∣∣∣∣
xk−1

and for filter step

xk = xk−1
k +Kk

(
mk − hk

(
xk−1
k

))
(4.21a)

Kk = Ck−1
k HT

k

(
HkC

k−1
k HT

k + Vk
)−1

(4.21b)

Ck = (I −KkHk)Ck−1
k (4.21c)

Hk =
∂hk
∂x

∣∣∣∣
xk

.

4.2.3 Goodness of the Estimate

The Kalman filter has its origins in least squares methods. The least squares
method is an approach to find an approximate solution of an overdetermined
or inexactly specified system of equations. One application is to estimate a
set of parameters for a model that fit a given amount of data points. This is
accomplished by minimizing the sum of the squared residuals of the observed
and expected values. To reflect that some of the data points may be more
reliable than others they may be weighted by their inverse covariances. If the
measurement errors are independent and normally distributed.

In case of the Kalman filter there are two residuals to consider: The first
one is the residual between the expected state vector xk−1

k after propagation
from time k − 1 to k and the state vector xk after filtering. The second one
is the residual of the actual measurement mk and the measurement expected
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from the filtered estimate hk (xk). The χ2
k after processing the measurement at

time k then is [Fuj]

χ2
k = χ2

k−1+
(
xk − xk−1

k

)T (
Ck−1
k

)−1 (
xk − xk−1

k

)
+

(mk − hk (xk))T (Vk)−1 (mk − hk (xk)) . (4.22)

In statistics the number degrees of freedom is the number of independent
observations minus the number of parameters that are estimated [Ore82]. If
there are N measurements where each measurement vector has the dimension
r and s state parameters to estimate then the number degrees of freedoms ν is

ν = N · r − s. (4.23)

The probability density function of the sum of squared residuals with ν degrees
of freedom is [BSGM06]

f (ν, t) =


1

2
ν
2 Γ( ν2 )

t
ν
2−1e−

t
2 x > 0

0 x ≤ 0
(4.24)

where the gamma function Γ (a) is defined as

Γ (a) ≡
∫ ∞

0

e−tta−1dt. (4.25)

If the parameter a is an integer the gamma function becomes the faculty function

Γ (n+ 1) = n! n ∈ Z. (4.26)

The respective distribution function is obtained by integration of f (ν, t):

P
(
ν, χ2 ≤ x

)
=
∫ x

−∞
f (ν, t) dt

=


γ( 1

2ν,
1
2x)

Γ( 1
2ν)

≡ 1

2
ν
2 Γ( ν2 )

∫ x
0
t
ν
2−1e−

t
2 dt x > 0

0 x ≤ 0
(4.27)

The function γ (a, x) is called the incomplete gamma function. The χ2 prob-
ability density and distribution functions with different degrees of freedom are
plotted in figure 4.2.

The value P
(
ν, χ2 ≤ x

)
describes the probability that a χ2 ≤ x would be

observed by chance alone. Likewise 1−P
(
ν, χ2 ≤ x

)
is the probability that the

χ2 is at least x.
A high amount of very low probabilities 1− P for a particular data set are

an indication that either the system model is wrong, the variances of the errors
are incorrect or the errors are not normally distributed. On the other hand,
an accumulation of probabilities close to one, that means an abnormally large
amount of seemingly good χ2 values near zero have been observed, may caused
by overestimating the errors [PTVF07, chap. 15].
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Figure 4.2: χ2 probability density function and distributions with different de-
grees of freedom ν.

4.2.4 Alternative Formulations of the Kalman Filter

There are many different ways to write equations 4.21b and 4.21c that calcu-
late the gain and update the covariance matrix. These will be referred to as the
conventional formulation as they were originally proposed by Kalman [Kal60].
While mathematically equivalent these may have advantages concerning com-
putational efficiency or numerical stability.

The formulation by Swerling [Swe59] calculates the covariance before the
gain matrix:

Ck =
[(
Ck−1
k

)−1
+HT

k (Vk)−1
Hk

]−1

(4.28a)

Kk = CkH
T
k (Vk)−1 (4.28b)

It requires the inversion of three matrices, two of which have the dimension of
the state vector. Therefore the dimension of the state vector should be small if
this formulation is used.

The Joseph stabilized [BJ68] formulation is more complex than formula 4.21c
for the calculation of the covariance matrix, but it is more robust and numeri-
cally stable.

Ck = (I −KkHk)Ck−1
k (I −KkHk)T +KkVkK

T
k (4.29)

Unlike 4.21c it guarantees that Ck remains symmetric and positive definite as
long as Ck−1

k is symmetric and positive definite as well.
The square root and UD-filter perform a Cholesky- and UDUT -decompo-

sition respectively of the covariance matrix. The Kalman filter equations are
reformulated so that only the Cholesky- and UD-factors are propagated. This
increases numerical stability at the cost of additional computational effort. Al-
gorithms for these methods can be found in [GA08, chapter 6].

The sequential filter [Sim06, chapter 6] avoids matrix inversions and treats
each component of the measurement vector seperately. This can be beneficial
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for embedded systems. Let r be the dimension of the measurement vector
mk. When processing the measurement mk initialize with x0,k = xk−1

k and
C0,k = Ck−1

k . The Kalman gain Ki,k, covariance matrix Ci,k and state vector
xi.k are then updated iteratively for each i ∈ {1 . . . r}:

Ki,k =
Ci,kH

T
i,k

Vi,k
(4.30a)

Ci,k = (I −Ki,kHi,k)Ci−1,k (4.30b)
xi,k = xi−1,k +Ki,k (mi,k −Hi,kxi−1,k) (4.30c)

where Hi,k is the i-th row of the projector matrix and Vi,k is the variance of the
i-th component of the measurement vector.

4.2.5 Yet More Kalman Filter and Alternatives

Many extensions of the Kalman filter and adaptations to certain problems ex-
ist. For example, the Kalman filter can be modified to work with coloured noise
or correlated process and measurement noise. Several approaches like the un-
scented Kalman filter exist that reduce the linearization error of the extended
Kalman filter. For highly non-linear systems the particle filter may be an al-
ternative to the Kalman filter. There are approaches that improve stability for
non-Gaussian noise. Information filtering only propagates the inverse covari-
ance matrix and can improve numerical stability with large initial estimation
uncertainties. The H∞ filter can be applied when the system model is unknown
or varying. The books of Dan Simon [Sim06] and Grewal and Andrews [GA08]
extensively deal with such topics.

Some extensions of the Kalman filter belong to the class referred to as
adaptive filters and are suitable in case of fake measurements or multiple mea-
surements per detector layer. An overview of adaptive methods can be found
in [FS99] and [FS06]. One such method is the Deterministic Annealing Filter.

4.3 The Deterministic Annealing Filter

During track reconstruction (chapter 3) track candidates may be assigned wrong
measurements. Furthermore, MDC wire measurements only yield a drift dis-
tance. It is ambiguous on which side of the wire the particle passed by. Ad-
ditionally, it is possible that a track passes two neighbouring cells in an MDC
layer. Such an environment with multiple, ambiguous and fake measurements
poses a challenge to the Kalman filter as it does not include a mechanism to
handle competing measurements or reject measurements.

The adaptive methods incorporate mechanisms that can handle competing
measurements in a layer and optimize hit assignment. An overview of adaptive
methods can be found in [FS99] and [FS06]. The method implemented for
HADES is the Deterministic Annealing Filter (DAF) which is an extension
of the Kalman filter. Measurements are now assigned weights which is the
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estimated probability that the measurement belongs to the track. Competing
measurements mi

k for the same time (detector layer) k are combined into an
effective measurement m̄k:

m̄k = V̄k

(
n∑
i=1

pik
(
V ik
)−1

mi
k

)
(4.31)

V̄k =

(
n∑
i=1

pik
(
V ik
)−1

)−1

(4.32)

The measurements are weighted by their respective error covariances V ik .
The index i = {1 . . . n} runs over all competing measurements. The effective
measurement m̄k and effective measurement covariance V̄k can then be used
in the Kalman filter equations 4.21a and 4.21b instead of mk and Vk. The
DAF algorithm consists of two steps: First, a Kalman filter and smoother is
run on all measurements using their respective weights. Then the weights are
recalculated according to the distance of the real measurement to the estimated
measurement from the smoother [Fle06]:

pik =
Φik∑n

j=1 Λjk + Φjk
(4.33)

Φik =
1

(2π)
r
2
√
T · |V |

· exp
(
− 1

2T
(
mi
k − hk (xnk )

)T (
V ik
)−1

(. . . )
)

(4.34)

Λik =
1

(2π)
r
2
√
T · |V |

· exp

(
−
χ2

cut
2T

)
(4.35)

with r ≡ dim mi
k and |V | is the determinant of V.

There are two parameters in the DAF: the cut-off parameter χ2
cut and anneal-

ing factor T . The cut-off parameter is equivalent to a χ2 cut for low T . The
annealing factor basically inflates the measurement errors. The effect of these
two parameters is shown in figure 4.3 for a single measurement without competi-
tors. The distance has little effect on the assignment probability for very high
annealing factors so that even measurements that are far away are still taken
into account. The lower the annealing factor the higher the weight is affected
by the distance and the DAF is forced to make a decision whether to accept or
reject the measurement.

A problem when optimizing measurement weights is to avoid local optima
since information in the initial phases of the filter may be insufficient. Therefore
an annealing process is introduced where the aforementioned two steps (Kalman
filter and recalculating the weights) are iterated several times and the annealing
factor is lowered in each iteration. Since the measurements now contribute
according to their weights the number of degrees of freedom for the DAF then
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is [Win02]:

ν =

(∑
k

∑
i

pik · r

)
− s. (4.36)
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Chapter 5

Runge-Kutta Methods

The Kalman filter requires a method to propagate charged particles through
the magnetic field. In a homogeneous the particle follows a helical trajectory.
However, in inhomogeneous magnetic fields as it is the case for the HADES
detector the equation of motion can no longer be solved analytically making a
numerical approach neccessary. The class of Runge-Kutta schemes are numerical
methods to integrate differential equations. Finding a solution x = x(tN ) of an
ordinary differential equation

dx

dt
= f(x, t) (5.1)

at the point tN with the known value

x(t0) = x0. (5.2)

at some starting point t0 is called an initial value problem. A solution x(t)
would be

x(tN ) = x0 +
∫ tN

t0

f(x, t)dt. (5.3)

If the primitive function x(t) is unknown this integral has to be solved nu-
merically. One possibility is to replace the unkown integral by a known incre-
ment function Φn. The interval [t0, tN ] is partitioned into N subintervals. Let
hn = tn+1 − tn be the length of the n-th subinterval or the step size. The
solution x(t) can then be recursively appromixated for each n ∈ 1, . . . , N by

xn+1 = xn + hn · Φn (hn, tn, xn, xn+1) +O
(
hp+1
n

)
. (5.4)

This is called a one-step method. Each step is treated as if it were the first one
since the value of xn+1 only depends on the result xn of the previous step. The
local discretization error in each step is of the order p + 1. The global error
for the whole integration is of one order lower. If the increment function does
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not depend on xn+1 then the scheme is called explicit, otherwise it is called
implicit. Implicit schemes require solving nonlinear algebraic equations, but are
numerically more stable and less susceptible to round-off errors [DB08, chap. 6]
[Klo11]. The simplest approach is the Euler method where the derivate f(x, t)
is used as the increment function in each step. The explicit Euler method is

k
(n)
1 = f(xn, tn)

xn+1 = xn + hn · k(n)
1 +O

(
h2
n

)
(5.5)

and the implicit form would be

k
(n)
1 = f(xn+1, tn+1)

xn+1 = xn + hn · k(n)
1 +O

(
h2
n

)
. (5.6)

Both are one-step methods of order p = 1 since the error in each step is of second
order O

(
h2
n

)
. The Euler method is neither very accurate nor stable [PTVF07].

Only one evaluation point k
(n)
1 is used in each step. The accuracy can be

improved by adding more evaluation points. For example, the midpoint rule as
proposed by Carl Runge ([Run95]) improves the Euler scheme by using a second
point in the middle of each subinterval:

k
(n)
1 = f (xn, tn)

k
(n)
2 = f

(
xn +

1
2
hnk

(n)
1 , tn +

1
2
hn

)
xn+1 = xn + hn · k(n)

2 +O
(
h3
n

)
. (5.7)

In general a Runge-Kutta method is a derivative free one-step method with s
evaluation points:

k
(n)
i = f

xn + hn

s∑
j=1

aijk
(n)
j , tn + ci · hn

 , i = 1, . . . , s

xn+1 = xn + hn ·
s∑
i=1

bik
(n)
i︸ ︷︷ ︸

Φn(hn,tn,xn,xn+1)

+O
(
hp+1
n

)
(5.8)

where 0 ≤ c1 < · · · < cs ≤ 1. The parameters may not be chosen arbitrarily,
but may be subject to constraints. An important constraint is consistency
as inconsistent methods do not converge [DB08]. A Runge-Kutta method is
consistent if and only if

s∑
i=1

bi = 0. (5.9)

Other possible constraints include:
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• invariance to autonomisation ⇔ ci =
∑s
i=1 aij , i = 1 . . . s and the scheme

is consistent,

• explicit ⇔ aij = 0, ∀j ≥ i with i, j = 1, . . . , s,

• further order constraints.

Thus, the Euler method (5.5) would be a Runge-Kutta method of 1st order with
s = 1 evaluation points while the midpoint method a 2nd order with 2 evaluation
points. Generally, the order p of the scheme and number of evaluation points s
do not have to be the same. An often used Runge-Kutta method with p = s = 4
is

k
(n)
1 = f (xn, tn)

k
(n)
2 = f

(
xn +

1
2
hnk

(n)
1 , tn +

1
2
hn

)
k

(n)
3 = f

(
xn +

1
2
hnk

(n)
2 , tn +

1
2
hn

)
k

(n)
4 = f

(
xn + hnk

(n)
3 , tn + hn

)
xn+1 = xn +

1
6
hn ·

(
k

(n)
1 + 2k(n)

2 + 2k(n)
3 + k

(n)
4

)
+O

(
h5
n

)
. (5.10)
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Chapter 6

Adaptation of the Kalman
Filter for HADES

In order to use the Kalman filter in track reconstruction the following quantities
need to be defined:

• the parameters of the state vector xk of the trajectory at a measurement
layer,

• initial values for the state vector and covariance matrix (described in chap-
ter 8,

• the propagation function fk (xk) to extrapolate the track state through
the magnetic field to the next measurement layer and the propagator ma-
trix Fk,

• the projection function hk (xk) and the respective projector matrix Hk,

• the process noise covariance matrix Qk.

The complexity of the Kalman filter depends on the dimension of the state
vector as several matrices depend on this dimension. Higher matrix dimensions
lead to more operations and may introduce roundoff errors. Therefore, the stat
vector should have few parameters for an efficient track reconstruction. Corre-
lations between the state parameters should be avoided. Both the projection
and propagation function should be close to linear to minimize the linearization
error of the extended Kalman filter.

The Kalman filter works with either reconstructed segment points. The track
is iteratively propagated from one drift chamber to the next one and the estimate
then further improved by taking the measurement into account. The magnetic
field is strongest between MDC-II and MDC-III. This step mainly determines
the quality of the estimate from the Kalman filter. The Kalman filter is further
adapted to work with the drift time information and an annealing process is
added to deal with competing and fake hits. The projection function differs
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vastly for these approaches. Figure 6.1 shows an example track of a particle
traversing the detector. The clusters of fired wires can be seen and the drift
chambers are sketched out.

Figure 6.1: Example track traversing the detector [Gal12].

6.1 Track Representation

In the HADES specific coordinate system called the sector coordinate system a
track is parameterized by four variables (Θ, φ, ρ, z) as depicted in figure 6.2. The
variable Θ is the polar angle, i.e. the angle between the positive z-axis and the
track direction vector. The azimuthal angle φ is the angle between the positive
x-axis and the track direction. The parameter ρ is the minimum distance of the
track to the z-axis. The final parameter z is the coordinate on the z-axis which
points in beam direction. The angle φ can assume values between 60◦ and 120◦.
It is rotated with respect to the lab system by (n + 1) · 60◦ mod 360◦ where
n ∈ {0, . . . , 5} is the sector number.

The state of a particle is fully described by its position and momentum. The
chosen state vector for the Kalman filter is the same as in [Man99, GK06]:

x =
(
x, y, tx, ty,

q

p

)
. (6.1)

The parameters x and y are two cartesian coordinates in the sector coordinate
system. Since track states are always located on a planar measurement layer
it is sufficient to store only two position coordinates. The track direction is
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Figure 6.2: The track parameterization in HADES [Rus06].

represented by the tangents of two angles:

tx = tanφ =
px
pz

(6.2)

ty = tan Θ =
py
pz

(6.3)

The final parameter q/p is the ratio of the particle charge q in units of elementary
charges and the magnitude of the momentum p.

6.2 Propagation through the Magnetic Field

The equation of motion of a charged particle traversing an inhomogenenous
magnetic field can not be solved analytically. A numerical method to solve
this problem are Runge-Kutta methods. A general description of Runge-Kutta
schemes can be found in chapter 5. The following Runge-Kutta method offers a
good compromise between accuracy, computation costs and numerical stability:
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k
(n)
1 = f (xn, tn)

k
(n)
2 = f

(
xn +

1
2
hnk

(n)
1 , tn +

1
2
hn

)
k

(n)
3 = f

(
xn +

1
2
hnk

(n)
2 , tn +

1
2
hn

)
k

(n)
4 = f

(
xn + hnk

(n)
3 , tn + hn

)
xn+1 = xn +

1
6
hn ·

(
k

(n)
1 + 2k(n)

2 + 2k(n)
3 + k

(n)
4

)
+O

(
h5
n

)
. (6.4)

This method is of order four and the function f (x, t) is evaluated at four points.
The differential equation that needs to be solved is the equation of motion of a
charged particle in a magnetic field given by the Lorentz force:

dp

dt
= Fl = κ · q · v ×B (6.5)

with the momentum p given in MeV/c, the charge q in units of the elementary
charge, the velocity v in mm/s and the magnetic field in Tesla. The coefficient κ
is neccessary to convert the Lorentz force in units of MeV/c·s. Its value then is

κ = 0.299792458
MeV

c ·mm · T
. (6.6)

Since the Lorentz force always acts perpendicular to the direction of motion the
magnitude of the particle’s velocity and momentum does not change. The time
can be replaced by the path length: dt = ds/|v|. Equation 6.5 then becomes:

dp = κ · q · v
|v|
×B ds. (6.7)

Substituting the normalized direction vector e = v/|v| = p/|p| the above equa-
tion is

de =

 dex
dey
dez

 = κ · q
p
· e×B ds = κ · q

p
·

 eyBz − ezBy
ezBx − exBz
exBy − eyBx

 · ds. (6.8)

The particle is propagated in z-direction which is aligned along the beam direc-
tion by using the Runge-Kutta method shown in 6.4. The differentials of the
two state parameters tx = ex/ez and ty = ey/ez that describe the track direction
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then are:

dtx = (ez · dex − ex · dez) /e2
z

= κ · q
p
·
(
eyezBz − e2

zBy − e2
xBy + exeyBx

)
/e2
z · ds

= κ · q
p
·
(
tyBz − (1 + t2x)By + txtyBx

)
· ds (6.9)

dty = (ez · dey − ey · dez) /e2
z

= . . .

= κ · q
p
·
(
−txBz − (1 + t2y)Bx − txtyBy

)
· ds. (6.10)

Replacing the path length s by the z-coordinate with

ds =
√
t2x + t2y + 1 · dz,

the differential equation 6.8 can be rewritten:

x′ ≡ ∂x

∂z
= tx

y′ ≡ ∂y

∂z
= ty

t′x ≡
∂tx
∂z

= κ · q
p
·
√
t2x + t2y + 1 ·

(
tyBz − (1 + t2x)By + txtyBx

)
(6.11)

t′y ≡ ∂ty/∂z

= κ · q
p
·
√
t2x + t2y + 1 ·

(
−txBz − (1 + t2y)Bx − txtyBy

)
(
q

p

)′
≡
∂ qp
∂z

= 0.

The derivation of the state vector x by the step direction z is:

∂x

∂z
=


∂x/∂z
∂y/∂z
∂tx/∂z
∂ty/∂z

∂(q/p)/∂z

 =


tx
ty
t′x
t′y
0

 ≡ f(x, z). (6.12)

This is the propagation function f (x, z) in equation 4.18. The propagation of
the state vector x by a Runge-Kutta step from z0 to ze is done by solving the
above equation. Let h = ze − z0 be the step size. The Runge-Kutta method
numerically computes the change in the track state ∆x = xze − xz0 from xz0
to xze by evaluating the propagation function f at four points with different
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z-coordinates as in 6.4:

∆x1 = h · f (x(z0), z0)

∆x2 = h · f
(
x(z0) +

1
2

∆x1, z0 +
1
2
h

)
∆x3 = h · f

(
x(z0) +

1
2

∆x2, z0 +
1
2
h

)
(6.13)

∆x4 = h · f (x(z0) + ∆x3, z0 + h) .

The predicted state vector then is:

xze = xz0 +
1
6

∆x1 +
1
3

∆x2 +
1
3

∆x3 +
1
6

∆x4 +O(h5). (6.14)

The state vector can be approximated in each intermediate position

zi =
{
z0, z0 +

1
2
h, z0 +

1
2
h, ze

}
(6.15)

by

x(zi) = xz0 +
∆xzi
h
· (zi − z0). (6.16)

The propagator matrix F can be extrapolated by

F ≡ dxze
dxz0

= I +
1
6
F1 +

1
3
F2 +

1
3
F3 +

1
6
F4. (6.17)

The required intermediate Fi, i ∈ {1, . . . , 4} are computed as follows:

Fi ≡
d∆xzi
dxz0

= h · df (xzi , zi)
dxzi

· dxzi
dxz0

(6.18)

= h · df (xzi , zi)
dxzi

·
(
I + Fi−1 ·

zi − z0

h

)
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with the Jacobi matrices

df (x, zi)
x

=



∂x′

∂x
∂x′

∂y
∂x′

∂tx
∂x′

∂ty
∂x′

∂( qp )

∂y′

∂x
∂y′

∂y
∂y′

∂tx

∂y′

∂ty

∂y′

∂( qp )

∂t′x
∂x

∂t′x
∂y

∂t′x
∂tx

∂t′x
∂ty

∂t′x
∂( qp )

∂t′y
∂x

∂t′y
∂y

∂t′y
∂tx

∂t′y
∂ty

∂t′y
∂( qp )

∂( qp )′

∂x

∂( qp )′

∂y

∂( qp )′

∂tx

∂( qp )′

∂ty

∂( qp )′

∂( qp )



=


0 0 1 0 0
0 0 0 1 0
0 0 ∂t′x/∂tx ∂t′x/∂ty ∂t′x/∂( qp )
0 0 ∂t′y/∂tx ∂t′y/∂ty ∂t′y/∂( qp )
0 0 0 0 0

 . (6.19)

These formulas allow to propagate the state vector and calculate the Jacobian
matrix needed by the Kalman filter [GK06].

6.3 Measurement Vector and Projector Matrix

6.3.1 Reconstructed Segment Hits

In a first step the Kalman filter was adapted to use the reconstructed segment
points as “measurement” vectors. As described in chapter 3 the segment fit
provides space coordinates with errors for up to four points that are assigned to
a track. The segment hits are stored in the coordinate system of the respective
segment plane. Since these planes are not parallel the coordinate and error
vectors are transformed into a common coordinate system, the sector coordinate
system which is described in section 6.1. The transformed vectors are passed to
the Kalman filter as measurement mk and error vectors εk. Only the x and y
coordinates are stored. The third coordinate is given by the constraint that the
measurement is located on the segment plane.

The measurement equation or projection function hk (xk) extracts a mea-
surement from a state vector. The chosen track state representation contains
the x and y coordinates resulting in a simple measurement equation:

hk

(
xk = (x, y, tx, ty, q/p)

T
)

= (x, y)T = mk. (6.20)

The projector matrix is the Jacobian of h:

Hk ≡
∂hk
∂x

∣∣∣∣
xk

=
(

1 0 0 0 0
0 1 0 0 0

)
(6.21)
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6.3.2 Drift Chamber Measurements

In a second step the Kalman filter for HADES was adjusted to use the MDC
time measurements directly. The relevant component of this measurement is
the drift time, i.e. the time it took the primary electrons to trigger a signal
on the wire. First of all this drift time has to be extracted from the MDC
time measurement. The track is propagated to the next MDC layer. With
these information the minimum distance of the track to the sense wire can be
obtained. This minimum distance is used as the measurement vector in the
Kalman filter. There are two additional problems:

• There may be fake measurements that in reality belong to a different track.

• A particle may traverse two neighbouring drift cells and trigger two mea-
surements in the same MDC layer.

The Kalman filter cannot handle fake or competing measurements. One solution
is to use the Deterministic Annealing Filter introduced in 4.3. A common
reference system for all the competing measurements in an MDC layer is needed
in order to combine them into an effective measurement.

Extracting the Drift Time

Figure 6.3a shows a simulated signal of a sense wire. A logical signal is generated
with a width that is comparable to the time the amplified and shaped signal
exceeded the threshold. A Time to Digital Converter (TDC) then measures
time1 (t1) and time2 (t2) where t1 is the time between the leading edge of
the logical ASD8 signal and the common stop signal. Likewise, t2 is the time
between the trailing edge and the common stop. The difference t2 − t1 is the
Time over Threshold (ToT).

The TDC measurements after proper TDC calibration are the sum of the
real drift time tdrift, the propagation time twire of the signal along the sense
wire to the read-out electronics and the time-of-flight ttof of the particle to the
drift cell relative to the stop signal derived from the trigger. The time-of-flight
also includes deviations that are common to all cells [HAD09, Mar05].

After wire clusters have been found during the track candidate search (ex-
plained in chapter 3) the position xwire where the signal was generated on the
wire is known. The signal speed on a sense wire obtained from the MdcDigitPar
container in HYDRA 1 is vwire = 250mm/ns [Mar11b], roughly 5/6 of the speed
of light. The propagation time on the wire then simply is

twire =
xwire
vwire

. (6.22)

The corrected time t1 − twire still contains the time-of-flight offset. The track
candidate search computes two points of the trajectory in the inner and outer

1HADES sYstem for Data Reduction Analysis - The analysis software framework for
HADES.
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(a) A drift chamber signal is composed of
the ASD8 response functions of single elec-
trons. The signal has been simulated with
GARFIELD [CER00].

(b) The values time1 is obtained when the
leading edge of the ASD8 signal first exceeded
the threshold. When the trailing edge falls
below the threshold again time2 is known.

Figure 6.3: Simulated signals of a drift chamber. Both pictures were taken
from [Mar05].

segment, respectively. Assuming a straight line track model in each segment,
the class HMdcSizesCellsLayer can calculate the minimum distance and impact
angle of the trajectory. Figure 6.4 shows how these values are defined for a
particle trajectory. Using these estimations for the impact parameters the con-
tainer MdcCal2ParSim can calculate the expected drift time tdrift,sim and error
∆t1,sim of time1. In the MDC layer l the time-of-flight correction would then
be

tltof = tl1 − tlwire − tldrift,sim. (6.23)

Since this is based on inaccurate estimations of the impact parameters a
weighted mean value over all layers l in a module is used instead. The invididual
time-of-flight corrections are weighted by the variances (∆t1,sim)2 of time1, i.e.
measurements with a small error are weighted higher than those with a large
error [Sim06, chap. 3.2]:

ttof =

[
5∑
l=0

1(
∆tl1,sim

)2
]−1

·
5∑
l=0

tl1 − tlwire − tldrift,sim(
∆tl1,sim

)2 . (6.24)

The superscript l denotes the index of a layer in a drift chamber module. With
these corrections the measured drift time then is

tdrift = t1 − twire − ttof (6.25)

The uncertainty in the time-of-flight calculations contributes to the drift time
error. To estimate this error data from Au+Au reactions at 1.5AGeV simulated
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Figure 6.4: The trajectory of a particle traversing a drift cell is parameterized
by its minimum distance to the sense wire and impact angle α. An impact angle
of 90◦ corresponds to an impact perpendicular to the wire plane [Mar05].

with HGeant 2 were used. The weighted mean values ttof for the time-of-flight
were calculated as previously described and compared with the time-of-flight in
the HGeant simulation obtained from the container HMdcCal1Sim. The Kalman
filter uses the RMS of the distributions shown in figure 6.5 as the additional
error due to the time-of-flight correction.

For comparison the time-of-flight from HMdcCal1Sim minus the corrections
for the individual layers are plotted in figure 6.6. The results are similar to
the approach using the weighted mean value, except for the first MDC module
which shows a systematic shift in some of the time-of-flight calculations. This
second peak is gone when working with the mean values. The reasons for this
peculiar structure are not known and should be investigated in the future.

Reconstructing the Minimum Distance

There is a non-trivial correlation between the drift time and the minimum dis-
tance of the particle to the sense wire [Mar05]. The class HMdcSizesCellsLayer
is used to convert the time to a distance and calculate the impact angle of the
trajectory. It needs two space points as input that are obtained from the ex-
pected state vector. Since the magnetic field is weak in the MDCs and the two
space points lie close together the trajectory can be approximated as a straight
line in the vicinity of the drift cell. The container MdcCal2Par uses the drift
time and the expected impact angle to calculate the minimum distance error.

2The GEANT [CER93] based simulation package used in the HADES software HYDRA.
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Figure 6.5: The plots show the difference of the time-of-flight obtained from the
simulation data ttof,cal1 and the weighted mean value for the time-of-flight ttof .
The RMS values are used as errors for the time-of-flight corrections.

Projection Function for Single Wire Measurements

A projection function is needed that extracts a measurement vector from the
track state x = (x, y, tx, ty, q/p). A vector is transformed from the sector coordi-
nate system into the wire coordinate system of a drift chamber by a translation
and rotation. Let R be the matrix that describes this transformation, u the co-
ordinate of the track state on the wire, v the coordinate on the wire plane of the
drift chamber, w the coordinate perpendicular to the wire plane (see fig. 6.7) and
θ = 90◦−α where α is the impact angle of the track as defined in figure 6.4. The
angle tan θ = pv/pw is obtained by transforming the non-normalized direction
vector (tx, ty, 1) into the wire coordinate system:

tan θ (tx, ty) = R21 · tx +R22 · ty +R23. (6.26)
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Figure 6.6: The error for time-of-flight correction if the individual values for
each layer are taken instead of the weighted mean in figure 6.6.

The projection function that computes the minimum distance of the track to
the wire is

h (x) = (R21 · x+R22 · y +R23 · z (x, y)) · cos θ (tx, ty) (6.27)

= (R21 · x+R22 · y +R23 · z (x, y)) · 1√
1 + (tan θ (tx, ty))2

. (6.28)

Since track states are always defined on a plane the z-coordinate is dependent
on the x and y positions. With this the projector matrix

Hk =
∂hk
∂x

∣∣∣∣
xk

can be calculated. The minimum distance still carries an ambiguity on which
side of the sense wire the particle passed by. If this is ignored and the exp-
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Figure 6.7: The wire coordinate system.

tected and true track state lie on opposite sides of the wire then this may pull
the estimate into the wrong direction [Man95]. This can be resolved with the
Deterministic Annealing Filter by treating the two possibilites as competing
measurements.

When there are competing wire measurements from different cells at the
same drift chamber layer then a common reference frame for all measurements
is needed.

Projection Function for Competing Wire Measurements

The reconstructed minimum distance is passed to the Kalman filter as the mea-
surement vector. Because particles may have traversed two neighbouring drift
cells there can be up to two measurements in an MDC layer (fig. 6.8). The
competing measurements are combined into an effective measurement m̄k. To
calculate the innovation hk (x̄k)−m̄k the projection function is needed hk (x̄k).

The two measurements need to be transformed in a common reference frame
that still allows for a simple projection function. The DAF propagates the
trajectory to the MDC layer. A virtual layer is created that serves as the
common reference frame. One of the plane’s axis (U) points along the wire,
the other one (V ) from the point of closest approach (PCA) on the wire to the
PCA on the trajectory (see fig 6.7). The expected track position is the origin
of the plane’s coordinate system.

Let p0 be the exptected position of the track. A direction vector t0 can be
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Figure 6.8: A particle passed through two neighbouring drift cells.

obtained from the track state parameters tx and ty:

t0 =
1√

t2x + t2y + 1

 tx
ty
1

 . (6.29)

The trajectory is approximated as a straight line in the vicinity of the MDC
layer:

p (t) = p0 + t · t0. (6.30)

The wire end points w0 and w1 define a line segemt:

w (s) = w0 + s · s0 with s0 ≡ w1 −w0 and s ∈ [0, . . . 1] . (6.31)

If there are two competing hits in an MDC layer it doesn’t matter which of
the two sense wires that generated a signal is used because all sense wires of a
layer are parallel. We look for the parameters tc and sc so that the distance of
the trajector to the wire ‖p (tc)−w (sc)‖ is minimal. The PCA of the track to
the sense wire then is p (tc) and the PCA on the wire is w (sc). The solutions
are [Ebe01]:

sc =
be− cd
ac− b2

(6.32)

tc =
ae− bd
ac− b2

(6.33)
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with

a = s0 · s0, b = s0 · t0, c = t0 · t0, d = s0 · (w0 − p0) and e = t0 · (w0 − p0) .

If sc is smaller than zero or greater than one then the PCA is outside of the
wire. If ac− b2 is equal zero then the trajectory and wire are parallel.

The axis (U) of the virtual plane is a unit vector along the direction of the
wire

U =
1

‖w1 −w0‖
· (w1 −w0) (6.34)

and the second axis U points from the PCA on the wire to the PCA on the
track

V =
1

‖p (tc)−w (sc)‖
(p (tc)−w (sc)) . (6.35)

The origin O of the virtual layer’s coordinate system is the predicted track
position (fig. 6.9). The resulting virtual layer is perpendicular on the predicted
track state and the plane with the sense wires.

True Trajectory

Expected State

Virtual Layer

Impact Angle

Figure 6.9: A virtual layer is created that is perpendicular on the predicted
track state and the sense wires.

The minimum distances are projected onto the virtual layer (fig. 6.10). Then
the projected measurements are converted in regard to the centre of the virtual
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Figure 6.10: The minimum distances are projected onto the virtual layer.

layer (fig. 6.11). Finally the effective measurement and measurement error are
calculated with formulas 4.31 and 4.32.

To easily calculate the innovation the track state vector is transformed into
the virtual layer coordinate system as well:

x =
(
x, y, tx, ty,

q

p

)T
︸ ︷︷ ︸
state in sector coordinates

→ x′ =
(
u, v, tu, tv,

q

p

)T
︸ ︷︷ ︸

state in virt. layer coordinates

.

Let W be the normal vector of the virtual plane. The transformed state pa-
rameters then are:

u = (p0 −O) ·U
v = (p0 −O) · V

tu =
t0 ·U
t0 ·W

tv =
t0 · V
t0 ·W

. (6.36)

In this new coordinate system the parameter u corresponds to the position on
the sense wire and v to the minimum distance to the wire. The projection
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Figure 6.11: The projections of the minimum distances are transformed into a
common coordinate system.

function h and projector matrix H assume the simple forms

h (x′) = v (6.37)

H =
(
0 1 0 0 0

)
. (6.38)

Since the Kalman gain matrix K depends on the covariance matrix C it has to be
transformed into the virtual layer coordinate system as well. The transformation
matrix is the Jacobian

JSec→Lay =
∂ (u, v, tu, tv, q/p)

T

∂ (x, y, tx, ty, q/p)
T
. (6.39)

Then the covariance in the new coordinate system is [EPIM97]

C ′ = JSec→Lay · C · JTSec→Lay. (6.40)
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The inverse transformation back to the sector coordinate system is done via x
y
z

 = O + u ·U + v · V

tx =
t′x
t′z

ty =
t′y
t′z

(6.41)

with the direction vector

t′ =
1

‖tu ·U + tv · V +W ‖
(tu ·U + tv · V +W ) .

The transformation of the covariance matrix is carried out with the Jacobian

JLay→Sec =
∂ (x, y, tx, ty, q/p)

T

∂ (u, v, tu, tv, q/p)
T
. (6.42)

6.4 Energy Loss and Multiple Scattering

Interactions between the particles and detector materials can randomly perturb
the particle’s trajectory. This results in a reduction of the particle’s energy. Mul-
tiple scattering can also cause a change in direction. Energy loss and multiple
scattering are taken into account by the Kalman filter. During the propagation
of the particle the properties of the traversed materials are calculated after each
Runge-Kutta step. Then the particle momentum and the process noise matrix
can be updated.

Material Budget of the MDC’s

Taking multiple scattering and energy loss into account requires knowledge
about the properties of the passed materials. An MDC module consists of
the following components in the active area:

• 12µm wide, aluminized mylar foils that form the inlet and outlet windows
of an MDC.

• Cathode and field wires forming the boundary of the drift cell.

• A sense wire in the centre of each cell.

• A mixture of a counter and quencher gas. MDC plane I is filled with a
70 : 30 mixture of Argon and carbon dioxide. The other planes contain
84% Argon and 16% iso-Butane.
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Module Material Diameter [µm]
Cathode wire MDC I Copper/Berillium 98%/2% 76

MDC II-III Aluminum 80
MDC II-III Aluminum 100

Field wire MDC I-II Aluminum 80
MDC III-IV Aluminum 100

Sense wire MDC I-III Gold plated tungsten 20
MDC IV Gold plated tungsten 30

Table 6.1: Materials and diameters of the different wire types [Mün10].

The materials and diameters of the wires are listed in table 6.1. The dimen-
sion of a drift cell and the distances (pitch) between the wires can be found in
figure 6.12.

It is not useful to model single wires in the Kalman filter due to precision and
performance reasons. Instead, a material mixture is calculated by comparing
the volume occupancies of the various components in a drift cell [Mün10]. If the
component i occupies the volume vi and has the density ρi then its proportion
by weight pi is:

pi =
mi∑
imi

=
viρi∑
i viρi

(6.43)

To get the effective atomic mass Aeff , atomic number Zeff and radiation length
X0 of a mixture the properties of the components can be added [CER93, chapter
CONS110]:

Aeff =
∑
i

pi ·Ai (6.44)

Zeff =
∑
i

pi · Zi (6.45)

1
ρX0

=
∑
i

pi
ρiX0,i

(6.46)

Similarly, the density of a mixture is:

1
ρ

=
V

M

=
∑
i

Vi
M

=
∑
i

Vi
mi

mi

M

=
pi
ρi
. (6.47)
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Module pitch ps pitch cs pitch c drift cell area a× d
[mm] [mm] [mm] [mm×mm]

I 2.5 2.5 2 5× 5
II 2.5 3 2 5× 6
III 4 6 2 8× 12
IV 5 7 4 10× 14

Figure 6.12: The dimensions of a drift cell in the different MDC mod-
ules [Mar05].

Module A Z ρ [g/cm3] X0 [cm] I [eV ]
I 38.87 17.52 3.47012 · 10−3 5836.09 172.24
II 41.07 19.02 3.5668 · 10−3 5767.87 156.01
III 31.85 15.18 6.74459 · 10−3 3402.59 157.47
IV 36.65 17.25 3.90731 · 10−3 5583.12 153.00

Table 6.2: Effective material properties of the drift chambers.

The mean excitation energy I of a compound can be approximated by another
additivity rule [SB82]:

I = exp

(∑
i pi

Zi
Ai
· ln Ii

Z
A

)
(6.48)

with

Z

A
=
∑
i

Zi
Ai
. (6.49)

The effective properties in the MDCs calculated with the above formulas are
listed in Table 6.2. Figure 6.13 shows the relative contribution of the different
MDC components to the effective radiation length.
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Figure 6.13: Relative contributions of the different materials in MDC I to the
effective radiation length for (a) Argon/iso-Butane (84 %/16 %) and (b) Ar-
gon/CO 2 (70 %/30 %) gas mixtures [Mün10].

Multiple Scattering

Particles with a charge z can undergo elastic scattering in the Coulomb field of
the nuclei of the detector material. For hadronic particles the strong interaction
also contributes. Multiple scattering randomly changes the direction of the
particle. Its momentum p remains unaffected since the nuclei are much more
massive. The width of the deflection angle due to multiple scattering is [N+10]

ΘMS =
13.6MeV

βpc
z
√
t (1 + 0.0038 ln t) (6.50)

and the variance is [Man04]

CMS =
(

13.6MeV

βpc

)2

t (1 + 0.0038 ln t)2 (6.51)

where t = l/X0 is the track length l inside the medium in units of radiation
lengths X0.

Energy Loss due to Ionization

When traversing the detector material charged particles interact with the elec-
trons of the nuclei. The nuclei are excited or ionized and the particle looses
energy in the process. The mean energy loss for a spinless particle with charge
z is described by the Bethe-Bloch formula [N+10]:

−
〈
dE

dx

〉
= Kz2Z

A

1
β2

(
1
2

ln
(

2mec
2β2γ2Tmax
I2

)
− β2

)
(6.52)

K = 4πNAr2
emec

2 = 0.307075
MeV · cm2

g
(6.53)
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Here Tmax is the maximum kinetic energy which a particle with mass M may
be transfer onto an electron:

Tmax =
2mec

2β2γ2

1 + 2γmeM +
(
me
M

)2 . (6.54)

The formulas for electrons and positrons differ because of spin, kinematics and
identity of the incident electron with the electrons which it ionizes. For rela-
tivistic electrons (z = 1, β → 1) the mean ionization loss is [SRF94]

−
〈
dE

dx

〉
=

1
2
K
Z

A

(
2 ln

2mec
2

I
+ 3 ln γ − 1.95

)
. (6.55)

The corresponding formula for relativistic positrons is slightly different due to
the different free electron cross section that must be applied in the calculation:

−
〈
dE

dx

〉
=

1
2
K
Z

A

(
2 ln

2mec
2

I
+ 4 ln γ − 2

)
. (6.56)

The above formulas are valid for moderate energies with 0.1 ∼< βγ ∼< 1000 in
intermediate-Z materials. For protons this corresponds to momenta roughly
between 94MeV/c and 30, 000MeV/c. This is within the momenta range which
can be expected for the hadronic background in HADES. In the case of electrons
or positrons however, radiation loss is more important than ionization loss.

Energy Loss due to Radiation

Figure 6.14 shows the different contributions of energy loss for electrons in
lead depending on the particle energy. Radiation loss already starts to become
dominant after a few tens of MeV.

Energy loss of electrons and positrons due to bremsstrahlung is described by
the Bethe-Heitler equation [Man04]:〈

dE

dx

〉
= − E

X0
. (6.57)

Integrating yields the energy E
′

that a particle with initial energy E0 has after
traversing the distance t = l/X0 in the material:〈

E
′

E0

〉
= e−t. (6.58)

As can be seen radiation loss is proportional to the particle energy while ioniza-
tion loss only rises logarithmically. The critical energy Ec is sometimes defined
as the energy where both loss rates are equal. For gases this is [N+10]:

Ec =
710MeV

Z + 0.92
. (6.59)

For example, in the case of MDC module I with an effective atomic number
Z ≈ 17.5 the critical energy would be around 38MeV .
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Figure 6.14: The energy loss per radiation length as a function of energy for
electrons and positrons in lead [N+10]. Radiation loss starts to dominate after
a few tens of MeV.

Integration into the Kalman Filter

After each Runge-Kutta step the properties of the traversed materials are cal-
culated. Inside an MDC chamber a material mixture is used as described in 6.4,
outside the chamber it is air. A hypothesis for the particle type is needed, es-
pecially the distinction between electrons/positrons and hadrons is neccessary.
The energy of the particle and therefore the track parameter q/p is corrected by
the mean energy loss.

The variances of multiple scattering and energy loss are added to the process
noise matrix Q. The contribution of multiple scattering for thin scatterers to
the process noise matrix Q is [Man04]:

Q(tx, tx) =
(
1 + t2x

)
·
(
1 + t2x + t2y

)
· CMS

Q(ty, ty) =
(
1 + t2y

)
·
(
1 + t2x + t2y

)
· CMS (6.60)

Q(tx, ty) = Q(ty, tx) = txty ·
(
1 + t2x + t2y

)
· CMS .

Ionization loss is mostly relevant at low energies where the resolution is mainly
affected by multiple scattering [Man99]. Therefore its effects on the momen-
tum uncertainty is neglected. Radiation loss affects the momentum estimation
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error [Man04, SRF94]:

Q

(
q

p
,
q

p

)
=
(
q

p

)2 (
e−t

ln 3
ln 2 − e−2t

)
(6.61)
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Chapter 7

Implementation in HYDRA

7.1 The HYDRA Framework for Track Recon-
struction

The software framework for the analysis in the HADES experiment is called
HYDRA [sg11] (HADES sYstem for Data Reduction Analysis). The analysis
is done per event. An event is the record of all physical interactions in the
detector resulting from the reaction between a beam particle and the target.
Events can be real or simulated. During the reconstruction process the following
steps are executed for each event:

1. Read information about the current event.

2. Execute the task set for the event.

3. Write event data in a ROOT tree.

4. Clear information from the current event.

A task in an algorithm used in the reconstruction process. Such a task
must inherit from the abstract class HTask. A task is executed by calling its
member function HTask *next(Int_t &errCode) which also returns a possible
error code and a pointer to the task it is connected to after it is finished. The
functions Bool_t init() and Bool_t reinit() are called before the first call
of the next() function and each time a new input file is read, respectively.
They essentially retrieve pointers to needed parameters and categories needed
and perform the specific initialization of the task.

A special task is the task set (class HTaskSet) which groups together several
tasks. Tasks may arbritrarily be added and connected among each other. For
each event the global Hades class executes such a task set that is set up by
the user. This allows for a flexible system to choose the algorithms and their
execution sequence during the track reconstruction.

63



The HReconstructor class is another special task representing an algorithm
that transforms data. It provides the pure virtual Int_t execute() function
that has to be implemented in a derived class.

7.2 The Classes in the Kalman Filter Library

For the integration into the HYDRA framework a task for the Kalman filter is
needed. The HKalFilterTask class is derived from HReconstructor and fulfills
this purpose. The class layout of the Kalman filter library is shown as UML
diagrams in 7.1 and 7.2.

The HKalFilterTask has two important data members of classes HKalInput
and HKalSystem. The HKalInput class looks for the next track candidate in
the current event by looping over META-detector matches and extracts the
measurement information. The Kalman filter can process time measurements
from drift chambers or reconstructed segment hits as “measurements”. The
input generates objects of class HKalMdcHit that store a measurement vector
along with its error. When the Kalman filter works with reconstructed segments
then the measurement vector contains the x– and y–positions of a segment hit in
the sector coordinate system. For wire hits the drift time and error are stored.
The drift time is later converted to a minimum drift distance (see chapter 6.3.2)
which is then treated as the “measurement” by the Kalman filter.

Hits also have a pointer to the measurement layer where the hit has been reg-
istered. The class HKalMdcMeasLayer contains information about the geometry
and material of an MDC related detector component. The measurement layers
are modelled as planes with a certain thickness. The plane either represents
the sense wire layer of an MDC or the virtual segment plane. The measure-
ment layers themselves are stored in the class HKalDetCradle that serves as a
container.

HKalFilterTask uses the spline fit and segment points to generate an esti-
mate for the initial track state. The main Kalman filter and DAF algorithms
are implemented in the HKalSystem class. Only the track propagation is done
by a separate class HKalRungeKutta that needs access to the HADES field
map (HMdcTrackGField). In the future, part of the algorithms collected in
HKalSystem will be distributed over several separate classes to increase main-
tainability and make this class less prone to programming errors.

Figure 7.2 shows the class layout of HKalSystem that processes the mea-
surements retrieved from the HKalInput class. For each observation point
a HKalTrackSite is created that stores information about the results of the
Kalman filter and the measurements. MDC measurement information is stored
in HKalMdcHit just as they have been generated by the input class. A site
may contain several hits in the case of competing measurements. The class
HKalTrackState stores the results of the Kalman filter: the state vectors, co-
variance, process noise and propagation matrices. Every site has a track state
for each of the various Kalman filter steps: the prediction, filtering, smoothing
and possibly inverse filtering.
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Figure 7.1: Class diagram for the Kalman filter library. The structure of the
HKalSystem class is shown separately in figure 7.2.
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Figure 7.2: The components of the HKalSystem class.
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7.3 Using the Kalman Filter Library

7.3.1 Initialization

/gHades:Hades

:HKalFilterTask

:Reconstruction Macro

:HKalInput

:HKalSystem

new()

/fTaskList:HTaskSet
new()

getTaskSet()

fTaskList

new()

add(kalFilter)

Bool_t

init()

init()

init()

new()

Bool_t

Bool_t

Bool_t

eventLoop()

reinit()

reinit()

new()

Bool_t

Bool_t()

next()

nextTrack()

HParticleCand

fitTrack()

track accepted

pointer to next task

finalize()

error code

repeat for all events

after reaching final event

Figure 7.3: The message exchange between the participating classes during a
typical track reconstruction procedure is shown in this sequence diagram.

Of the classes in the Kalman library only HKalFilterTask needs to be ac-
cessed directly by the user. Figure 7.3 shows the interactions relevant to the
Kalman filter. First the global Hades object has to be created. The neccessary
initializations include setting up the spectrometer, runtime database, parame-
ter sources and task sets. An example program for this procedure can be found
in the HYDRA manual [sg11, chap. 2.6]. In order to add the Kalman filter
a task set needs to be created and added to the task list of the global Hades
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object. What needs to be changed in the example program is to replace the
Runge-Kutta task with the Kalman task:

Bool t createHades ( I n t t datasource ,
TString inputDir ,
TString inputF i l e ,
I n t t r e f Id ,
TString eventbu i lde r ,
TString paramSource ,
TString a s c i i P a r F i l e ,
TString roo tParF i l e ) {

. . .

// Create s p l i n e task s e t . No need to add the Runge−Kutta task
here anymore .

HSplineTaskSet ∗ sp l ineTaskSet = new HSplineTaskSet ( ”” , ”” ) ;
HTask ∗ sp l ineTasks = spl ineTaskSet−>make( ”” , ” s p l i n e ” ) ;

// Create Kalman f i l t e r task .
// Input i s s imu la t i on or r e a l data .
Boo l t sim = kTRUE;
// kTRUE: f i l t e r wire h i t s .
// kFALSE: f i l t e r segment h i t s .
Boo l t f i t W i r e s = kTRUE;
HKalFilterTask ∗ k a l F i l t e r = new HKalFilterTask ( sim , f i tWireHi t s ,

r e f I d ) ;

// Add to the task s e t o f the g l o b a l HADES ob j e c t .
HTaskSet ∗masterTaskSet = gHades−>getTaskSet ( ” s imu la t i on ” ) ;
masterTaskSet−>add ( sp l ineTasks ) ;
masterTaskSet−>add ( k a l F i l t e r ) ;

. . .

After the initialization is finished and gHades->eventLoop() has been called
in the main program the Kalman filter will be used as a reconstructor task
instead of the Runge-Kutta algorithm.

This example macro demonstrates how to read the output from the Kalman
filter and fill some simple histograms:

// Example macro that reads output o f the Kalman f i l t e r task
// and f i l l s some s imple histograms .

void histKalman ( TString d a t a F i l e s = ” reco ∗ . root ” ) {

// HLoop i s a he lpe r c l a s s to a l low f o r f a s t l oop ing
// o f HADES ds t s .
// kTRUE: c r e a t e Hades ( needed to work with standard
// e v e n t s t r u c tu r e )
HLoop ∗ loop = new HLoop(kTRUE) ;
loop−>addFi l e s ( d a t a F i l e s ) ;

// Read c a t e g o r i e s r e l e v a n t to the Kalman f i l t e r .
i f ( ! loop−>s e t Input ( ”−∗,+HKalTrack ,+HKalSite ,+HKalHitWire ,+

HKalHit2d” ) ) {
cout<<”Could not r e t r i e v e po in t e r to c a t e g o r i e s . ”<<endl ;
e x i t (1 ) ;
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}

// Make an i t e r a t o r to loop over HKalTrack o b j e c t s .
TI t e ra to r ∗ i terCand = 0 ;
i f ( loop−>getCategory ( ”HKalTrack” ) )

iterCand = loop−>getCategory ( ”HKalTrack” )−>MakeIterator ( ) ;

// Get category p o i n t e r s .
HCategory∗ catCand =

HCategoryManager : : getCategory ( catKalTrack ) ;
i f ( ! catCand ) {

cout<<” Category catKalTrack not found . ”<<endl ;
e x i t (1 ) ;

}

HCategory ∗ catCandSite =
HCategoryManager : : getCategory ( ca tKa lS i t e ) ;

// Correct h i t category i s determined l a t e r .
HCategory ∗ catCandHit = NULL;

// Make some example histograms .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−
TH2F ∗hPhiTheta = new TH2F( ” hphitheta ” ,

”#Theta : #Phi f o r not r e cons t ruc t ed
t ra ck s ” ,

60 , 60 .F , 120 .F , 90 , 0 .F , 90 .F) ;
hPhiTheta−>GetXaxis ( )−>S e t T i t l e ( ”#Phi [# c i r c ] ” ) ;
hPhiTheta−>GetYaxis ( )−>S e t T i t l e ( ”#Theta [# c i r c ] ” ) ;

TH2F ∗hchimom = new TH2F( ”hchimom” , ”#ch i ˆ{2} : p” ,
100 , 0 .F , 2000 .F , 60 , 0 .F , 100 .F) ;

hchimom−>GetXaxis ( )−>S e t T i t l e ( ”p [MeV/c ] ” ) ;
hchimom−>GetYaxis ( )−>S e t T i t l e ( ”#ch i ˆ{2}” ) ;

// Loop over events .
// −−−−−−−−−−−−−−−−
I n t t e n t r i e s = loop−>g e t E n t r i e s ( ) ;

for ( I n t t i = 0 ; i < e n t r i e s ; i++) {
// Get next event . Categor i e s w i l l be c l e a r e d be f o r e .
nbytes = loop−>nextEvent ( i ) ;
i f ( nbytes <= 0) {

cout<<” Error read ing next event . nbytes = ”
<<nbytes<<endl ;

break ;
} // l a s t event reached

// Loop over t rack cand idate s .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−
iterCand−>Reset ( ) ;
HKalTrack ∗ t rack ;
while ( ( t rack = ( HKalTrack ∗) iterCand−>Next ( ) ) != 0) {

// Segment and wire h i t s have d i f f e r e n t c a t e g o r i e s .
i f ( track−>ge t I sSegHi t ( ) ) {

catCandHit = HCategoryManager : : getCategory (
catKalHit2d ) ;
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} else {
catCandHit = HCategoryManager : : getCategory (

catKalHitWire ) ;
}

// Get i n d i c e s o f the f i r s t and l a s t measurement s i t e s .
I n t t f romSite = track−>g e t I d x F i r s t ( ) ;
I n t t t o S i t e = track−>get IdxLast ( ) ;

i f ( f romSite < 0) {
cout<<” Index to s t a r t s i t e i s not s e t . Skipping

t rack . ”<<endl ;
continue ;

}

// Reconstruct ion has been s u c c e s s f u l or u n s u c c e s s f u l .
Boo l t trackAccepted = track−>getAccepted ( ) ;

// Ret r i eve data and f i l l h i s tograms .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( trackAccepted ) {

F l o a t t ch i2 = track−>getChi2 ( ) ;
F l o a t t ndf = track−>getNdf ( ) ;
// Reconstructed momentum .
F l o a t t momReco = f i r s t S i t e −>getMomSmoo ( ) ;

hChi2Mom−>F i l l ( ch i2 / ndf , momReco) ;
} else {

F l o a t t phi = track−>getPhi ( ) ;
F l o a t t theta = track−>getTheta ( ) ;

hPhiTheta−>F i l l ( phi , theta ) ;
}

} // loop over t r a ck s
} // loop over events

// Draw/ save histograms .
. . .
}

The Kalman filter uses a default setting for its parameters. The default
values may be modified if so desired. Information about the settings for the
Kalman filter and how to retrieve the reconstruction results can be found in
appendix A.
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Chapter 8

Results

The Kalman filter has been tested with simulated Au+Au reactions at energies
of 1.25AGeV . Events were generated by UrQMD [UrQ04] which served as
input for the HADES detector simulation package based on GEANT [CER93].
To increase statistics one additional electron and positron was generated for each
sector in all events. These additional leptons are uniformly distributed in polar
angles Θ and momenta ranging from 100MeV/c to 2000MeV/c. The evaluation of
the simulated data is carried out with the same procedure for track candidate
search and segment reconstruction as with experimental data. The particle
momenta and polar angles of the particles are not uniformly distributed (see
figure 8.1). The proton sample contains a larger amount of tracks with medium
momenta of 600 − 1200MeV/c and lower polar angles. The momentum of the
leptons is more evenly distributed and more of them are found at high theta
angles. Unlike the lepton samples the protons originate from the simulated
Au+Au collisions.

An initial estimate for the track state vector x = {x, y, tx, ty, q/p}T is needed
by the Kalman filter. The position coordinates x and y and direction parameters
tx and ty were obtained from the segment fit. The initial momentum is provided
by the spline task. The resolution of the segment reconstruction is 0.2mm in
x- and 0.1mm in y-direction. The error in track direction due to the position
uncertainty of the segment fit and the straight line approximation of the track
between the drift chambers is around tan (0.5◦). The RMS of the spline task
is 5.3% for protons (fig. 8.2). These values were used as the estimation error
variances for the initial covariance matrix.

The evaluated particles were protons, positrons and electrons with momenta
between 0.1GeV/c and 2.0GeV/c. Energy loss and multiple scattering is ac-
counted for in the simulation. The momentum resolution is defined as

∆p
p
≡ pGeant − pReconstructed

pGeant
· 100.

The reconstructed momentum of the Kalman filter and DAF is the estimated
momentum after smoothing at MDC-I. Because of the highly non-Gaussian
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Figure 8.1: The momentum and polar angle distributions of the different particle
species in the test sample. Included are only tracks that have been reconstructed
by the segment fit.

distributions of the residuals, the momentum resolution will be given as the
RMS of the residuals. As the RMS gives a large weight to outliers only values
from −20% to +20% are taken into account.

In general, the efficiency is defined as the number of real reconstructed tracks
divided by the number of all accepted real tracks. In this work, only the effi-
ciencies of the Kalman filter and DAF themselves are considered. The previous
steps of the reconstruction process are not included in the efficiency.

Track reconstruction is considered as failed if the χ2 divided by the number
degrees of freedom exceeded a certain threshold or an error was encountered
during reconstruction. To allow for a comparison of different reconstruction
methods the χ2 threshold has been chosen so that the efficiency is around 99%.
Since this number is an arbitrary choice the efficiency values are only meaningful
relative to each other. It is possible to look for tracks where reconstruction is
difficult.

In chapter 8.1 the results for the Kalman filter that fits reconstructed seg-
ment points are presented. Chapter 8.2 discusses dependencies on the input and
chapter 8.3 the choice of parameter settings for the DAF. In 8.4 the different
reconstruction methods are compared. Most of the tests have been done with
proton tracks. Results refer to the proton sample unless mentioned otherwise.
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Figure 8.2: Plotted is the momentum resolution of the spline fit for the proton
tracks.

8.1 Tests with the Kalman Filter

8.1.1 Parameters and Settings

The Kalman filter iterates through the measurement points in beam direction
from the inner segment to the outer segment. Afterwards, track states are
smoothed in the opposite direction. The smoothing is important to get a good
estimation at the first MDC chamber and trace the track back to the vertex
region. Table 8.1 shows the momentum resolution of the Kalman filter at the
last measurement point and the smoothed momentum at the first measurement
point. Smoothing could provide a small improvement in the momentum estimate
for lepton tracks.

Particle RMS
(

∆p
p [%]

)
Filtered Smoothed

Positrons 4.52 4.36
Electrons 4.58 4.42
Protons 4.49 4.47

Table 8.1: Comparison of the momentum resolution without and with smooth-
ing.

The initial momentum estimate for the Kalman filter is obtained from the
spline fit (see chapter 3). The resolution of the spline fit is already 5.3% which
the Kalman filter could improve to 4.5%. The residuals in momenta for both
the spline fit and the Kalman filter show a non-gaussian distribution with pro-
nounced tails (fig. 8.3). The tracks with already good starting estimates bene-
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fitted the most while there were little improvements in the long tails.
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Figure 8.3: The momentum resolution of the Kalman filter (black line) compared
to the initial estimate from the spline fit (red line).

The Kalman filter can be run in forward direction from MDC-I to MDC-IV
or in backward direction from MDC-IV to MDC-I. The momentum resolution
in backward direction decreased to 5.0% (fig. 8.4). When fitting backwards
the initial state has to be obtained from the outer segment which has a worse
resolution than the inner one resulting in a worse performance than in forward
direction.
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(a) Forward iterations.
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Figure 8.4: A comparison of the momentum resolution for forward and backward
iteration.
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No. of Iterations RMS
(

∆p
p [%]

)
Mean

(
∆p
p [%]

)
Efficiency

1 4.47 −0.47 0.9898
2 4.58 −0.30 0.9939
3 4.49 −0.35 0.9928

Table 8.2: The Kalman filter with different amount of iterations.

Another test was to run several iterations of the Kalman filter. The estimate
from the previous iteration serves as input for the next one and the measure-
ments are then processed again by the Kalman filter in the opposite direction.
Smoothing is only applied after the final iteration. As can be seen in table 8.2
multiple iterations did not improve the momentum estimate.

8.1.2 Covariance Matrix and Roundoff Errors

Filling the initial covariance matrix with realistic values that correspond to the
estimation errors is beneficial for the Kalman filter performance. Assuming
estimation errors that are too large can lead to a divergence of the filter and
numerical instability. The variances of the initial estimation errors were set to
realistic values and then increased by a factor of 10 and 100, respectively.

Additionally, several different formulations of the Kalman filter equations
were compared for possbile numerical instabilities. Roundoff errors are a conse-
quence of the finite representation of numbers in computers. If they accumulate
this may lead to a degradation of the Kalman filter performance. The covari-
ance matrix was tested for positive definiteness and symmetry. An asymmetric
covariance is an indication of numerical degradation. In order to avoid an overly
high sensitivity, two off-diagonal elements of the matrix were not counted if their
relative difference was smaller than 10−9.

Another possible factor that contributes to roundoff errors are ill-conditioned
matrices that need to be inverted. In general, the condition of a problem de-
scribes the sensitivity of the output data to variations in the input data. A
problem is called well-conditioned if a small change in the input produces only
small changes in the output. Conversely, the problem is called ill-conditioned
if small variations in the input results in large variations in the output [GA08,
chap. 6.2]. The condition number κ of a matrix A [DB08, chap. 2]

κ (A) = ‖A‖ · ‖A−1‖ (8.1)

is a quantity for the “easiness” of its inversion. Matrix norms can be defined
with respect to vector norms ‖ · ‖p:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖=1

‖Ax‖p. (8.2)

The smallest p–norm for symmetric matrices is the Euclidian norm given by the
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largest eigenvalue λmax of the matrix AT ·A:

‖A‖2 =
√
λmax (AT ·A). (8.3)

The condition is equal to 1 with respect to the above norm for orthogonal
matrices where the inversion can be achieved by a simple transposition. It
approaches infinity for singular matrices. The problem of inverting the matrix
A is called ill-conditioned if adding 1 to its condition produces no effects:

1 + κ (A) = κ (A) in machine precision. (8.4)

This is the case if κ (A) > 2/ε where the machine epsilon or unit roundoff error
ε is defined as the largest number where

1 +
ε

2
= 1 in machine precision and (8.5)

1 + ε = 1 + ε in machine precision.

The conventional (equations 4.21b and 4.21c) and Joseph stabilized (equa-
tion 4.29) formulations of the Kalman filter equations need to invert a matrix
with the dimension of the measurement vector while the Swerling formulation
(equations 4.28) has to invert a matrix of the dimension of the state vector two
times. The UD-filter (described in chapter 4.2.4) improves the condition of the
covariance matrix by a decomposition of the matrix.

Table 8.3 shows that the momentum resolution deteriorated due to the over-
estimation of the initial errors to a point where there was no more improvement
compared to the input momentum. Track reconstruction is considered as failed
if the χ2 exceeds a threshold value. Since larger values in the covariance matri-
ces tend to reduce the χ2 of the fit the efficiency rises slightly. All calculations
are performed in double floating point precision.

The amount of asymmetric elements in the covariance matrix also increased
with larger initial covariance values. This problem could be greatly reduced
by applying numerically more stable Joseph formulation of the Kalman filter
equations. Only the Swerling formulation produced a very small amount of
ill-conditioned covariance matrices. While these are warning signs of numerical
degradation none of the methods had a significant impact on the final momen-
tum estimate.

8.1.3 Energy Loss and Multiple Scattering

During track reconstruction the effects of multiple scattering and energy loss by
radiation and ionization are taken into account as described in chapter 6.4.

Protons

Including the effects of multiple scattering in the Kalman filter has a significant
impact on χ2 and efficiency on low momenta proton tracks as can be seen in
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Initial Values Kalman
RMS

(
∆p
p [%]

)
Efficiencyfor Covariance Formulation

Normal Conventional 4.47% 0.9898
10× higher Conventional 5.09% 0.9948
100× higher Conventional 5.62% 0.9956
Normal Joseph 4.47% 0.9898
10× higher Joseph 5.09% 0.9947
100× higher Joseph 5.62% 0.9956
Normal UD-Filter 4.47% 0.9898
10× higher UD-Filter 5.09% 0.9947
100× higher UD-Filter 5.62% 0.9956
Normal Swerling 4.48% 0.9898
100× higher Swerling 5.62% 0.9925
Initial Values Kalman Symmetry Errors Ill-conditi–
for Covariance Formulation in Covariance oned Matrices
Normal Conventional 9026 0
10× higher Conventional 553, 413 0
100× higher Conventional 1, 728, 604 0
Normal Joseph 20 0
10× higher Joseph 26 0
100× higher Joseph 25 0
Normal UD-Filter – –
10× higher UD-Filter – –
100× higher UD-Filter – –
Normal Swerling 317, 666 4
100× higher Swerling 356, 540 16

Table 8.3: The effect of different initial covariance matrices and numerically
more stable formulations of the Kalman filter equations.
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Figure 8.5: The χ2 over the momentum when including (a) and excluding (b)
the effects of multiple scattering.
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Figure 8.6: The efficiency plotted against the momentum with and without
including the effects of multiple scattering.
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figures 8.5 and 8.6. Multiple scattering increases the uncertainty of the track
state and thus the covariance matrix which leads to lower χ2 values in general.

The protons in the simulation data have momenta between 100MeV/c and
2GeV/c and are subject to energy loss by ionization that is calculated with the
Bethe-Bloch formula (6.52) based on the momentum estimate. Their energy
loss as calculated by the Kalman filter is plotted in figure 8.7a. The distribu-
tion looks similar to the energy loss done in the GEANT simulation (fig. 8.7b).
In GEANT an additional scattering of the mean energy loss by a Landau dis-
tribution is applied while the Kalman filter only computes mean values of the
energy loss. Aside from this there are considerable differences at momenta lower
than 400MeV/c (fig. 8.7c).

It is possible that the Kalman filter starts with a momentum estimate that
is well below the real momentum. Because the energy loss increases with de-
creasing particle momentum this could lead to an overestimation of the energy
loss and pull the Kalman filter further into the wrong direction. Addition-
ally, the Bethe-Bloch formula 6.52 is no longer correct for low momenta. At
βγ ∼< 0.3 which corresponds to a momentum of p ∼< 280MeV/c respectively
shell corrections contribute to the energy loss. If βγ ∼< 0.1 or momenta smaller
than 94MeV/c additional corrections to the Bethe-Bloch formula have to be
made [N+10]. Including these corrections for low momenta protons could in-
crease the accuracy of the Kalman filter as well.

Leptons

In the case of positrons and electrons radiation loss dominates the loss by ion-
ization (formulas 6.55 and 6.56). The energy loss of the positrons is shown
in figure 8.8 and rises linearly with the particle energy as in the Bethe-Heitler
formula (6.57).
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(a) Energy loss in the Kalman filter.
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(b) Energy loss in the simulation.
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Figure 8.7: The energy loss calculated by the Kalman filter (a) and the GEANT
simulation (b) for protons. In (c) the difference between ∆E in the simulation
and ∆E computed by the Kalman filter can be seen. The energy loss ∆E has
been defined as ∆E = Efinal−Estart. Since the particle looses energy this value
is always negative.
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Figure 8.8: The energy loss of positrons as calculated by the Kalman filter.

8.1.4 Dependencies of Track Reconstruction Performance
on the Polar Angle

The HADES detector covers a wide angular range from 18◦ – 85◦ in the polar
angle Θ and almost full azimuthal angle φ. Figure 8.9 shows the momentum
resolution plotted over the momentum for different Θ–ranges. The resolution
gets worse for larger polar angles because there is less magnetic field available
than at smaller Θ. The deflection by the magnetic field is lower making a
momentum estimation more difficult. For smaller momenta tracks the resolution
is dominated by multiple scattering. This is more relevant for protons than for
leptons as could be expected from formula 6.50.

Figure 8.10 shows the polar angle Θ as a function of the azimuthal angle φ
in the sector coordinate system for the rejected tracks that tend to cluster at
the borders of the drift chambers where the magnetic coils are located and the
inhomogeneity of the magnetic field is especially strong.

The state parameters tx and ty are the tangents of two angles. At high
angles a small variation in the angle can lead to large changes in the tangent of
that angle. The assumption done in the extended Kalman filter that the system
stays approximately linear over small ranges is no longer valid. To avoid large
angles the coordinate system is rotated in the initial track direction which has
resulted in improvements of the momentum resolution for higher polar angles
Θ as can be seen in figure 8.11.

8.2 Effect of Non-Normal Error Distributions

The minimization with least-square methods is only optimal for normal error
distributions. Both the Kalman filter and the global fit that is currently used
for track reconstruction in HADES obtain the estimate for the initial track state
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(a) Protons
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Figure 8.9: The momentum resolution as a function of the momentum for dif-
ferent polar angle Θ ranges.

 ]° [Φ
60 70 80 90 100 110 120

 ]°
 [

Θ

0

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

300

350

(a) Protons

 ]° [Φ
60 70 80 90 100 110 120

 ]°
 [

Θ

0

10

20

30

40

50

60

70

80

90

0

2

4

6

8

10

12

14

(b) Positrons

Figure 8.10: The polar angle Θ as a function of the azimuthal angle φ for tracks
that could not be reconstructed or were cut due to high χ2.
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(a) Sector coordinate system
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(b) Rotated coordinate system
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(c) Difference sector minus rotated sector co-
ordinate system

Figure 8.11: The momentum resolution plotted over the momentum for different
polar angle ranges. In (a) the original sector coordinates were used while in (b)
the coordinate system was rotated in direction of the initial estimate of the track
direction. Figure (c) shows the difference between the two.
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from the segment and spline fits that do not provide normal distributions. The
spline fit also depends on the results of the segment fitter. In order to discrim-
inate the effects of the segment and spline fit four cases have been compared:

A Ideal tracking eliminates fake tracks and the errors from the segment fit
are normally distributed. To obtain an initial momentum estimate the
momentum from the simulation was smeared randomly by a Gaussian
function with a width of 5%. In this case the uncertainty distributions of
the initial track paramters state are normal.

B The initial momentum estimate is now obtained from the spline fit. The dis-
tribution of the spline fit is non-normal under ideal tracking as figure 8.12a
shows.

C Ideal tracking is turned off. Thus, the errors of the segment fit are no
longer normally distributed. The initial momentum estimate is obtained
by smearing the simulation momentum as in case A.

D The input is obtained from the segment and spline fit. The uncertainty
distributions of all track state parameters are now non-normal.
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(a) Ideal Tracking
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(b) Real Tracking

Figure 8.12: The momentum estimates from the spline fit of proton tracks with
ideal and real tracking. The Gauss fit has a width of σ = 2.47 ± 0.01 in (a)
and σ = 3.31± 0.01 in (b). The RMS of the distributions are 4.64% and 5.26%,
repectively.

The results for proton and positron tracks can be found in table 8.5. Ideal
tracking and Gaussian errors for all track states produced the best residuals in
momenta. The momentum resolution degraded after obtaining the initial mo-
mentum estimate from the spline fit and further after adding realistic segments.
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Tracking Particle RMS
(

∆p
p [%]

)
Skewness Kurtosis

Ideal Positrons 5.30 −0.284± 0.005 2.789± 0.010
Real Positrons 5.32 −0.096± 0.005 2.572± 0.010
Ideal Protons 4.64 −0.591± 0.003 4.623± 0.005
Real Protons 5.22 −0.145± 0.001 2.781± 0.002

Table 8.4: Difference between ideal and real tracking for the spline fit.

In most cases the distributions of the residuals in momenta were skewed
towards negative values that correspond to an overestimated reconstructed mo-
mentum. This is true for the spline fit (see table 8.4), the Kalman filter and
the global fit (table 8.6). Even under the ideal conditions of case A the Kalman
filter still provided an asymmetric, non-Gaussian momentum resolution. The
momentum estimate of the Kalman filter was generally inferior compared to the
global fit as can be seen in table 8.6.

Input Particle RMS
(

∆p
p [%]

)
Skewness Kurtosis

Filtered Smoothed
A Positrons 2.48 2.36 +1.167± 0.005 9.394± 0.010
B Positrons 3.60 3.77 +0.295± 0.005 6.077± 0.009
C Positrons 4.17 3.57 −0.332± 0.005 5.873± 0.010
D Positrons 4.52 4.37 −0.203± 0.005 3.978± 0.010
A Protons 2.13 2.04 −0.246± 0.003 3.485± 0.005
B Protons 3.00 2.90 −0.437± 0.003 7.422± 0.005
C Protons 4.23 4.22 −0.285± 0.003 4.501± 0.005
D Protons 4.49 4.47 −0.249± 0.001 3.945± 0.002

Table 8.5: Effects of different input methods on the Kalman filter. The filtered
column shows the momentum estimates at MDC-IV and the smoothed column
the estimate at MDC-I after smoothing. Skewness and kurtosis numbers refer
to the smoothed momentum at MDC-I.

Input Particle RMS
(

∆p
p [%]

)
Skewness Kurtosis

B Positrons 2.35 +0.298± 0.005 8.229± 0.009
D Positrons 4.18 −0.584± 0.005 4.466± 0.010
B Protons 2.54 −0.287± 0.002 7.183± 0.005
D Protons 4.42 −0.547± 0.001 3.801± 0.003

Table 8.6: Difference between ideal and real tracking for the global fit. The
recontruction efficiency for positrons with input method B is only 92.5% while
it is around 99% for all the other test setups.
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Table 8.7 lists the performance of the Kalman filter for different momemtum
uncertainties. Besides obtaining the initial momentum from the spline fit the
GEANT momentum was smeared by a Gaussian function with widths of 5%,
10% and 15%, respectively, and used as input for the Kalman filter. With
real segments a 15% momentum smearing yields similar results as momentum
input from the spline fit. Better, more Gaussian shape input data yields better
estimates by the Kalman filter.

Input
∆p
p [%] Efficiency

RMS Mean
Spline Momentum 4.47 −0.47 0.9898
5% momentum smearing. 4.22 −0.39 0.9905
10% momentum smearing. 4.38 −0.42 0.9918
15% momentum smearing. 4.47 −0.47 0.9917

Table 8.7: Comparison of the momentum resolution for proton tracks with
different input methods for the initial momentum.

Figure 8.13 shows the probability that the observed value for the χ2 is equal
or larger than χ2 for a correct model (see chapter 4.2.3). The probability distri-
bution should be flat for a correct χ2 distribution. In case D the Kalman filter
shows a large accumulation at low probabilities (fig. 8.13b). Possible reasons
are that the system model may be wrong, the variances of the errors could be
incorrect or the errors are not normally distributed. The latter can not be the
sole reason as the probability curve is not flat either in the ideal case A as can
be seen in figure 8.13a.
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(b) D

Figure 8.13: Probability distributions of the Kalman filter for proton tracks.
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8.3 Parameters Settings for the Deterministic
Annealing Filter

The parameters unique for the DAF are the cut-off parameter χ2
cut and the an-

nealing factors T . Tests have been done with various settings for proton tracks.
Since there are still open problems with the DAF (see 8.4) the results pre-
sented here should be viewed with caution. Table 8.8 lists the tested annealing
schemes. While the amount of possible schemes are endless some observations
can be made from this selection:

• Very high annealing factors and a lot of iterations (schemes A and B) are
not neccessary.

• The same is true when applying several medium temperatures (schemes
C and D compared to F and G).

• “Deep-freezing” by a final temperature close to zero should be avoided.
Figure 8.15 shows the weights of competing hits that both belong to the
same track. The annealing schemes F and J are compared and differ only
in the temperature of the last step. In 8.15a the final temperature is 1
while in 8.15b it is 0.1. Such a low temperature caused the DAF to reject
a lot more real hits.

• Two final iterations at T = 1 are preferable to one or three such iterations
(schemes C–G).

• Schemes K and L that start at low temperatures are inferior to those that
begin the annealing process at medium temperatures (schmes E–H).

• The scheme M only runs only one iteration at T = 1. This is similar to the
standard Kalman filter except that an effective measurement is calculated
in case of competing hits. The efficiency is much worse when annealing is
omitted showing the effectiveness of annealing.

• The efficiency stayed almost constant for all annealing schemes except for
scheme M.

• Im most cases the effect of different annealing schemes were small.

Figure 8.16 shows the momentum resolution and efficiency for different cut-
off parameters and the fixed annealing scheme T = {81, 9, 4, 1, 1}. The momen-
tum resolution slowly deteriorates with increasing cut-off values.
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Annealing Scheme
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Figure 8.14: The momentum resolution and efficiency of the DAF for different
annealing schemes with a cut-off parameter of χ2

cut = 4. The annealing schemes
are listed in table 8.8.
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(a) Finish at T = 1.
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(b) Finish at T = 0.1.

Figure 8.15: The assignment probabilities in the case that there are two com-
peting measurements in an MDC layer that belong to the same track. The DAF
was run with schemes F (plot (a)) and J (plot (b)) which only differ in the final
temperature. Scheme F finishes with T = 1 while scheme J finishes with the
very low temperature of T = 0.1.
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Scheme Annealing Factors Scheme Annealing Factors
A 1000, 200, 81, 9, 4, 1, 1 H 81, 4, 1, 1
B 200, 81, 9, 4, 1, 1 I 81, 9, 4, 1, 0.1, 0.1
C 81, 21, 9, 4, 1, 1 J 81, 9, 4, 1, 0.1
D 81, 21, 9, 4, 1 K 9, 4, 1, 1
E 81, 9, 4, 1, 1, 1 L 1, 1, 1
F 81, 9, 4, 1, 1 M 1
G 81, 9, 4, 1

Table 8.8: Tested annealing schemes.
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Figure 8.16: The momentum resolution (a) and efficiency (b) of the DAF for dif-
ferent cut-off parameters χ2

cut with an annealing scheme of T = {81, 9, 4, 1, 1}.
The square-root of the cut-off parameter is plotted.

8.4 Comparison of Methods

Five different reconstruction procedures have been compared:

1. The current reconstruction method with a global fit as described in 3.

2. The Kalman filter worked with the reconstructed segment points and mo-
mentum from the spline fit as input. The projection function for this case
can be found in chapter 6.3.1.

3. The Kalman filter was adapted to work directly with the drift cham-
ber measurements. The projection is calculated as desctibed in 6.3.2. If
there are competing measurements in an MDC layer only the one with the
smaller drift time is used.
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4. The Deterministic Annealing Filter is used to fit the drift chamber mea-
surements. Again, only one wire measurement per MDC layer is consid-
ered.

5. Competition between wire measurements in the same MDC layer is al-
lowed. The method to calculate the projection function differs signifi-
cantly from the previous cases and competing measurements have to be
combined into an effective measurement as described in 6.3.2.

Approaches 3 and 4 are intermediate steps to get from the Kalman filter
that works with space points to the DAF that works on competing drift time
measurements. From the tests in the previous sections the following settings
have shown to provide good results for the Kalman filter and the DAF:

• Use the conventional Kalman filter formulation (4.21b and 4.21c). The
numerically more stable formulas have not shown a significant improve-
ment.

• Rotate the coordinate system in initial track direction.

• Run one iteration in forward, i.e. beam, direction and smooth backwards.

• Calculate energy loss and multiple scattering.

• The DAF was run with a χ2
cut parameter of 4 and the annealing scheme

T = {81, 9, 4, 1, 1}.

The residuals in momenta for the different reconstruction approaches are
plotted in figures B.1, B.3 and B.8 for positron, electron and proton tracks, re-
spectively. Values for the mean, RMS and skewness of the residuals in momenta
are listed in tables 8.9, 8.10 and 8.11. Fitting the wire measurements without
annealing produced the worst momentum estimation and is not an option for
track fitting. The best results were consistently obtained with the global fit
while the Kalman filter performed slightly worse at high Θ angles and slightly
better at momenta smaller than 600MeV/c where multiple scattering becomes
more relevant (figures 8.17, B.4 and 8.22).

The Kalman filter and DAF versions that fit wire measurements without
competition between hits show a substantial degradation in momentum resolu-
tion at large polar angles Θ > 50◦ which becomes worse with higher momenta.
Additionally, the amount of rejected tracks starts to increase with higher az-
imuthal angles Φ (figures 8.19 and 8.23). As these systematics are present in
both approaches the annealing can be excluded as the reason. Adding annealing
significantly improved the overall momentum resolution when fitting wire mea-
surements. The bad performance of the DAF version that works with competing
hits should be investigated.

The residuals are mostly skewed towards negative values that correspond
to an overestimation of the reconstructed momentum. The asymmetry could
be alleviated by fitting the wire measurements instead of the segment points,
especially in case of the electrons.
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The global fit and Kalman filter show clusters of rejected tracks at the bor-
ders of the chambers where the magnetic coils are located.

Method
∆p
p [%] Efficiency

Mean RMS Skewness
Input from spline −0.11 5.32 −0.096± 0.005 –
Global fit −0.51 4.18 −0.584± 0.005 0.9893
Kalman filter −0.56 4.37 −0.203± 0.005 0.9898
Kalman filter for wire hits −0.62 5.39 −0.132± 0.005 0.9894
DAF for single wire hits +0.72 5.28 −0.267± 0.005 0.9846
DAF −0.03 6.22 +0.025± 0.005 0.8772

Table 8.9: Comparison of the momentum resolution for positron tracks.

Method
∆p
p [%] Efficiency

Mean RMS Skewness
Input from spline −0.56 5.03 −0.276± 0.005 –
Global fit −0.89 4.25 −0.933± 0.005 0.9901
Kalman filter −0.56 4.42 −0.564± 0.005 0.9809
Kalman filter for wire hits +0.21 5.28 −0.065± 0.005 0.9814
DAF for single wire hits +0.20 4.99 +0.003± 0.005 0.9810
DAF −0.49 6.03 −0.089± 0.006 0.8578

Table 8.10: Comparison of the momentum resolution for electron tracks.

Method
∆p
p [%] Efficiency

Mean RMS Skewness
Input from spline −0.33 5.22 −0.143± 0.001 –
Global fit −0.58 4.42 −0.547± 0.001 0.9903
Kalman filter −0.46 4.47 −0.249± 0.001 0.9898
Kalman filter for wire hits −0.20 4.70 −0.105± 0.001 0.9906
DAF for single wire hits −0.32 4.33 −0.366± 0.001 0.9874
DAF −0.29 6.18 −0.069± 0.001 0.8502

Table 8.11: Comparison of the momentum resolution for proton tracks.

Figures 8.18 and B.10 show the probabilites that the observed values for
the χ2 is equal or higher than χ2 for a correct model (also see chapter 4.2.3).
The Kalman filter yields a large accumulation at low probabilities, i.e. there
are too many high χ2 values. Possible reasons are that the system model may
be wrong, the variances of the errors could be incorrect or the errors are not
normally distributed. The non-normal error distributions can not be the only
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reason as has been discussed in chapter 8.2. The versions that work with wire
measurements and the global fit additionally yield too many low χ2 values that
indicates an overestimation of errors. In general, the χ2 distributions show some
improvement compared to the global fit (figures B.2 and B.9).

The reconstruction efficiency of the global fit falls with decreasing particle
momentum while it remains constant for the Kalman filter. The methods that
work with wire measurements experience a drop in efficiency at lower momenta
as well, though to a lesser degree than the global fit. The decline in efficiency
is much less pronounced for leptons (figures 8.19 and B.5) than for protons
(figure 8.23). The Kalman filter and DAF could benefit from the inclusion of
multiple scattering in the momentum estimation [PTVF07, chap. 15].

The efficiency falls slightly at very low polar angles of around Θ ∼ 20◦ and
sharply at high polar angles Θ > 65◦ with all the tested methods (figures 8.21,
B.7 and 8.25). The magnetic field strength is lower at higher polar angles making
the momentum reconstruction more difficult. A second dip in efficiency can be
observed for the Kalman filter and DAF that fit wire measurements without
competing hits at Θ ∼ 50◦ which corresponds to a perpendicular impact on the
drift chamber. This structure can also be observed in plots 8.19, B.5 and 8.23
that show Θ over Φ for the rejected tracks.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits
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(e) DAF

Figure 8.17: Comparison of the momentum resolution for different Θ ranges for
positron tracks.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure 8.18: Probability distributions for positron tracks.
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits
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Figure 8.19: The polar angle Θ over the azimuthal angle φ for positron tracks
that could not be reconstructed or were cut due to high χ2.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure 8.20: Efficiency over momentum for positron tracks.
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure 8.21: Efficiency over the polar angle Θ for positron tracks.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter with wire hits
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(d) DAF for single wire hits
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Figure 8.22: Comparison of the momentum resolution for different Θ ranges for
proton tracks.
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(c) Kalman filter with wire hits
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(d) DAF for single wire hits
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Figure 8.23: The polar angle Θ over the azimuthal angle φ for proton tracks
that could not be reconstructed or were cut due to high χ2.
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(c) Kalman filter for single wire hits
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Figure 8.24: Efficiency over momentum for proton tracks.
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Figure 8.25: Efficiency over the polar angle Θ for proton tracks.
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Chapter 9

Summary and Outlook

An extended Kalman filter and a Deterministic Annealing Filter have been
implemented and tested. The Kalman filter is able to work both with recon-
structed segment space points and the drift time measurements from the drift
chambers. The Kalman filter that works with reconstructed segment points
yields an overall momentum resolution comparable to the currently used global
fit. The inclusion of multiple scattering in the estimation process has resulted
in improved performance at lower momenta. The observed values for the χ2 are
closer to a true χ2 distribution and a better measurement for the fit quality. At
high momenta and polar angles the momentum resolution of the Kalman filter
is still inferior to the currently used global fit. The numerically more reliable
Joseph stabilization and UD-filter are available should roundoff errors become
an issue with the conventional formulation of the Kalman filter.

The handling of protons with low momenta needs to be improved as the
Kalman filter systematically overestimates the ionization loss that starts to play
a significant role at low momenta and rises with decreasing momentum. This
may pull the Kalman filter further into the wrong direction if the initial estimate
of the momentum is already too low. A method to obtain an initial particle
hypothesis and the possibilty to trace the track to the RICH- and META-
detectors have to be added before the Kalman filter can be tested with real
data. Some of the matrices like the projection and process noise matrix have
many elements that are always zero and the propagator matrix is a band-matrix.
Exploiting such structures would enhance the speed of the neccessary matrix
operations.

In the hope to reduce systematics in the segment fit it is planned to imple-
ment a Deterministic Annealing Filter that works directly with the drift time
information. As an intermediate step the Kalman filter has been adapted to fit
the drift time measurements taking at most one measurement per MDC layer
into account. In a further step annealing has been added which has proven to be
important for a good momentum reconstruction with wire measurements. While
the asymmetry in the momentum residuals has been reduced and momentum
resolution has improved for lower momenta and medium polar angles around
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30◦ − 50◦, the dependencies on the azimuthal angle and the vast deterioration
of performance at higher polar angles need to be resolved before this may be a
viable option. The drift distance carries an ambiguity on which side the particle
passed the sense wire. If the exptected and true track state lie on opposite sides
of the wire then this may pull the estimate into the wrong direction. Incorpo-
rating this ambiguity into the DAF could contribute to stabilize the fit. The
probability distribution also indicates that some components of the drift time
errors are still overestimated.

Finally, the program has been modified to handle competing wire measure-
ments in an MDC layer. Competing measurements are combined into an effec-
tive measurements and the projection function vastly differs from the previous
approaches. The results show that the implementation or procedure is still
faulty.

The version of the Kalman filter that works with reconstructed segment hits
shows some promising improvements and would be testable with real data if the
remaining issues are resolved. The versions that work with wire measurements
are not usable in their present state.
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Appendix A

Settings for the Kalman
Filter and Retrieving
Output Data

A.1 Settings for the Kalman Filter

The Kalman filter uses a default setting for its parameters. The default values
may be modified if so desired. It is important that the Kalman filter task has
been initialized before which happens automatically for all tasks that have been
added to the task set of the global Hades object when calling gHades->init().
Otherwise the Kalman filter objects are not created yet. The getTask() func-
tion allows to retrieve the Kalman filter task:

HKalFilterTask ∗ k a l F i l t e r = ( HKalFilterTask ∗) gHades−>getTask ( ”
KalmanFilterTask ” ) ;

Now the set functions for the various options may be called:

• setConstField(Bool_t constField)
Tells the Kalman filter to use a constant magnetic field instead of the
HADES field map. Default is off. The value for the field strength is set
separately with setFieldVector(const TVector3 &B).

• setCounterStep(Int_t c)
Print a notification every time c events have been filtered. Default is to
print no message (−1).

• setDafPars(Double_t chi2cut, const Double_t *T, Int_t n)
Change Parameters for the deterministic annealing filter.

chi2cut: The χ2-cut-off parameter. Default: 4.

T: Array with annealing factors. Default: T = {81, 9, 4, 1, 1}.
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n: Number of annealing iterations. Default: 5.

• setDirection(Bool_t dir)
Set the propagation direction to forward (kIterForward = kTRUE) or
backward (kIterBackward = kFALSE). The direction be reversed after
each iteration. Default is forward direction.

• setDoDaf(Bool_t daf)
Enable or disable the Annealing Filter. Default is on when fitting wire
measurements and off when fitting reconstructed segments.

• setDoEnerLoss(Bool_t dedx)
Turn energy loss calculation on or off. Default is on.

• setDoMultScat(Bool_t ms)
Include multiple scattering in the Kalman filter. Default is on.

• setDoPid(Int_t pid[], Int_t n)
Only particles with certain GEANT particle IDs will be filtered. This has
no effect for real data. Default setting is to filter all particles.

• setErrors(Double_t dx, Double_t dy,
Double_t dtx, Double_t dty, Double_t dmom)

Changes the error estimates that will be used to fill the initial covariance
matrix.

dx, dy: Position errors in sector coordinates. Default is 0.2mm in x–
and 0.1mm in y-direction. This corresponds to the resolution of the
inner reconstructed segment.

dtx, dty: Uncertainty in the direction tangents tx = tan (px/pz) and ty =
tan (py/pz). Default is tan (0.5◦).

dmom: Momentum uncertainty as a fraction. For example 0.1 means
initial estimate is within 10% of the true momentum. Default is 5%
which is roughly the uncertainty of the spline fit.

• setFillPointsArrays(Bool_t fill)
Stores the position and magnetic field strength of every Runge-Kutta step
for debug purposes. Default is off.

• setFieldMap(HMdcTrackGField *fMap, Double_t scale)
Change the field map and scaling factor.

• setFieldVector(const TVector3 &B)
Set vector of magnetic field in Tesla if a constant field has been selected
with setConstField(Bool_t constField).
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• setFilterMethod(Kalman::filtMethod type)
Determines which formulation of the Kalman equations will be used. The
formulations differ in speed and numerical stability.

Kalman::kKalConv: Use equation 4.21b to compute the Kalman gain
and 4.21c for the covariance update. This is the default value.

Kalman::kKalJoseph: Joseph stabilized form of the Kalman filter that
guarantees positive semi-definiteness of the covariance matrix (see
chapter 4.2.4).

Kalman::kKalUD: Use the numerically more stable UD-Filter [GA08,
chapter 6]. The UD filter does currently not work together with the
DAF.

Kalman::kKalSeq: The sequential filter avoids matrix inversions (see
chapter 4.2.4).

Kalman::kKalSwer: The Swerling formulation of the Kalman filter (see
chapter 4.2.4).

• setNumIterations(Int_t kalRuns)
Number of filter iterations. After each iteration the Kalman filter will use
the result of the previous iteration as starting value and filter the mea-
surement sites again. The direction will be reversed after each iteration.
This value is not used by the DAF. Default is 1.

• setRotation(Kalman::kalRotateOptions rotate)
May rotate the coordinate system before the filter process:

Kalman::kVarRot: (default): Tilt the coordinate system along the ini-
tial track direction to avoid large values for the track state parameters
tx and ty.

Kalman::kNoRot: Do no coordinate transformation. This setting is not
suitable for the large polar angles at HADES.

The results will be transformed back into the sector coordinate system
after the Kalman filter is finished.

• setSmoothing(Bool_t smooth)
Turn smoothing on or off. Default is on.

• setVerbose(Int_t verb)
Set which kind of messages will be printed: error and warning messages
(2), error messages only (1) or no messages at all (0). Default is to print
all messages (2).

The Kalman library offers a rudimentary debug mode. A higher level will
enable more detailed debug messages and print intermediate data. The available
settings are:

106



0: Debug mode is disabled.

1: Will make some additional consistency checks like dimension checks when
performing matrix multiplications or looking for bad elements in the co-
variance matrices.

2: Print the stage where the program currently is, for example the prediction
step of the Kalman filter, a Runge-Kutta step or smoothing a measurement
site.

3: Print calculated intermediate data like state vectors, for example.

4: More detailed as 3.

A debug level will perform all the tasks of the lower levels as well. By
default the debug mode is turned off. To increase performance the debug mode
is implemented using preprocessor directives. Therefore changing the debug
mode requires recompiling the library. Debug levels can be set separately for
the Kalman filter and the track propagation with a Runge-Kutta method by
modifying the variables called “kalDebug” and “rkDebug”, respectively, in the
file called “hkaldef.h”.

A.2 Retrieving Output Data

The Hades object can write data relevant to the event processing to an output
file. This has to be enabled by the user [sg11, chap. 2.3] and the categories
catKalTrack, catKalSite, catKalHitWire and catKalHit2d must be persis-
tent. The values for these categories are stored in hmdctrackg.def.

The category catKalTrack holds objects of class HKalTrack. Information
about the track can be obtained with the following methods:

• Bool_t getAccepted()
Returns if track reconstruction has been successful.

• Float_t getChi2()
Return the χ2 of the reconstructed track.

• Float_t getDafChi2Cut()
The cut-off parameter used by the DAF.

• Float_t getDafT(Int_t i)
The annealing factor used in the i-th iteration of the DAF. Only values of
the last getMaxNdafs() iterations are stored.

• Bool_t getDirection()
The propagation direction of the track. Returns kIterForward = kTRUE
for downstream and kIterBackward = kFALSE for upstream.
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• Bool_t getDoDaf()
Returns kTRUE if the DAF has been used.

• Bool_t getDoMultScat()
Track reconstruction included multiple scattering.

• Bool_t getDoEnerLoss()
Track reconstruction included energy loss.

• Int_t getIdxFirst()
Index of the measurement site that is closest to the target.

• Int_t getIdxLast()
Index of the measurement site that is furthest away from the target.

• Bool_t getIsSegHit()
The Kalman filter worked with reconstructed segment hits.

• Bool_t getIsWireHit()
The Kalman filter/DAF worked with MDC drift times.

• Int_t getMaxNdafs()
The maximum amount of DAF annealing factors for which results will be
stored. The DAF itself can run with more annealing factors, but then the
results of the first iterations will not be saved.

• Float_t getMomInput()
Initial momentum estimate.

• Int_t getNdafs()
The number of annealing factors for the DAF. This can be either lower
than or equal to getMaxNdafs().

• Float_t getNdf()
Number degrees of freedom.

• Int_t getNiter()
Number of Kalman filter iterations.

• Float_t getTrackLength()
Track length in mm.

• Int_t getPid()
The GEANT particle ID for simulation data or the initial particle hypoth-
esis in case of real data.

The class HKalTrack inherits from HBaseTrack. Currently the following
members are filled with data:

• Float_t getBeta()
Relativistic velocity evaluated at the measurement site most upstream.
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• Float_t getMass2()
Squared mass derived from the initial particle hypothesis.

• Float_t getP()
Float_t getErrP()
Smoothed momentum in Mev/c of the particle and variance at the first
measurement site. This momentum will be −1 if the standard settings
have been modified so that the Kalman filter did not execute the smooth-
ing.

• Float_t getPhi()
Float_t getErrPhi()
Azimuthal angle φ and its error in sector coordinates from the inner track
segment. The angle is given in radians.

• Char_t getPolarity()
Particle charge derived from initial particle hypothesis.

• Float_t getR()
Float_t getErrR()
The r–coordinate and its error in the sector coordinate system in mm.

• Char_t getSector()
The HADES sector number (0 . . . 5).

• Float_t getTheta()
Float_t getErrTheta()
Polar angle Θ and its error in sector coordinates from the inner track
segment. The angle is given in radians.

• Float_t getZ()
Float_t getErrZ()
The z–coordinate and its error in the sector coordinate system in mm.

The functions getIdxFirst() and getIdxLast() return indices to HKalSite
objects which may be retrieved from the category catKalSite. A site is an
observation point like an MDC layer. The information a site contains are:

• Int_t getSec()
Index of sector (0 . . . 5).

• Int_t getMod()
Index of MDC module (0 . . . 3).

• Int_t getLay()
Index of MDC layer (0 . . . 5).

• Float_t getEnerLoss()
Calculated energy loss up to this site.
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• Int_t getIdxFirst()
Index of site’s first competing hit.

• Int_t getIdxLast()
Index of site’s last competing hit.

• Float_t getMomFilt()
Momentum from filter step.

• Float_t getMomReal()
Momentum from simulation data.

• Float_t getMomSmoo()
Smoothed momentum.

• Int_t getNcomp()
Number of competing hits.

• Int_t getTrackNum()
Geant track number.

A site may contain several competing hits. There are two different cate-
gories depending on the hit type the Kalman filter worked with: fCatKalHit2d
for reconstructed segment hits and fCatKalHitWire for drift time measure-
ments. It is therefore important to use the correct category. The correct
hit type can be obtained from the functions HKalTrack::getIsSegHit() or
HKalTrack::getIsWireHit().

The category fCatKalHit2d returns HKalHit2d objects that contain position
information. Since the points are located on the virtual segment planes only
two coordinates are stored:

• Float_t getXmeas()
Measured position in sector coordinates in mm.

• Float_t getYmeas()
Measured position in sector coordinates in mm.

• Float_t getXreco()
Reconstructed position in sector coordinates in mm.

• Float_t getYreco()
Reconstructed position in sector coordinates in mm.

If the Kalman filter worked with drift time measurements the hit information
is written to an HKalHitWire object.

• Float_t getAlpha()
Reconstructed angle α of track and wire plane in degrees. 0 < α < 90◦.

• Int_t getCell()
Drift cell number.
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• Float_t getChi2Daf()
Hit’s χ2, i.e. the weighted, squared distance of the measurement to the
smoothed track state.

• Float_t getMinDist()
Reconstructed drift radius in mm.

• Int_t getNdafs()
The maximum amount of DAF iterations for which results will be stored.

• Float_t getTime1()
Drift time of first hit in ns. This is equivalent to time1 from HMdcCal1Sim.

• Float_t getTime2()
Drift time of second hit in ns. This is equivalent to time2 from HMdc-
Cal1Sim.

• Float_t getTime1Err()
Error of time 1 from HMdcCal1Sim in ns.

• Float_t getTimeMeas()
Measured time. Input for the Kalman filter. Includes tWireOffset and
tTof.

• Float_t getTimeReco()
Reconstructed drift time1 in ns. Calculated from alpha and mindist.

• Float_t getTimeTof()
Time of flight correction of time1 used by the Kalman filter.

• Float_t getTimeTofCal1()
Time of flight correction of time1 from HMdcCal1Sim.

• Float_t getTimeWireOffset()
Travel time on wire correction of time1.

• Float_t getWeight(Int_t i)
Assignment probabilities in the i-th DAF iteration.
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Appendix B

Additional Plots
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(a) Global fit
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(b) Kalman Filter for segment hits
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure B.1: Comparison of the momentum resolution for positron tracks.
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(c) Kalman filter for single wire hits

ν
2χ0 2 4 6 8 10 12 14

co
u

n
ts

0

2

4

6

8

10

12

14

16

18

20

22
310×

(d) DAF for single wire hits

Figure B.2: Comparison of χ2 distributions for positron tracks.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure B.3: Comparison of the momentum resolution for electron tracks.
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(a) Global fit
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(b) Kalman filter
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits
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Figure B.4: Comparison of the momentum resolution for different Θ ranges for
electrons.
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(a) Global fit
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits
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Figure B.5: The polar angle Θ over the azimuthal angle φ for electron tracks
that could not be reconstructed or were cut due to high χ2.
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(d) DAF for single wire hits

Figure B.6: Efficiency over momentum for electron tracks.
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(c) Kalman filter for single wire hits
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Figure B.7: Efficiency over the polar angle Θ for electron tracks.
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(c) Kalman filter for single wire hits
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(d) DAF for single wire hits

Figure B.8: Comparison of the momentum resolution for proton tracks.
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Figure B.9: Comparison of χ2 distributions for proton tracks.
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(c) Kalman filter for single wire hits
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Figure B.10: Probability distributions for proton tracks.
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[M+04] Christian Müntz et al. The HADES tracking system. Nuclear Instru-
ments and Methods in Physics Research A, 535:242–246, 2004. 16

[Man95] Rainer Mankel. Application of the kalman filter technique in the
HERA-B track reconstruction. Public HERA-B Notes, 1995. 51

[Man99] Rainer Mankel. ranger - a pattern recognition algorithm for the
HERA-B main tracking system. Public HERA-B Notes, (98-079),
1999. 40, 61

[Man04] Rainer Mankel. Pattern recognition and event reconstruction in par-
ticle physics experiments. Rep. Prog. Phys., 67(4), 2004. 59, 60, 61,
62

[Mar05] Jochen Markert. Untersuchung zum Ansprechverhalten der Vieldraht-
Driftkammern niedriger Massenbelegung des HADES Experimentes.
PhD thesis, Goethe-Universität, Frankfurt am Main, 2005. 3, 4, 9,
17, 18, 46, 47, 48, 58

[Mar11a] Jochen Markert, 11 2011. Personal note. 22

[Mar11b] Jochen Markert, 12 2011. Personal note. 46

[MS85] Leonard A. McGee and Stanley F. Schmidt. Discovery of the Kalman
filter as a practical tool for aerospace and industry. NASA Technical
Memorandum 86847, 1985. 26
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können.

Mein ganz besonderer Dank gilt Dr. Jochen Markert, der mir immer eine uner-
setzliche Hilfe war.

Außerdem danke ich der Arbeitsgruppe und meinen Arbeitskollegen im Büro
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