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Zusammenfassung

In Großexperimenten der modernen Kern- und Teilchenphysik ist neben dem Bau speziali-
sierter Detektoren auch das Design der Trigger- und Datenaufnahmesysteme von entschei-
dender Bedeutung. Insbesondere in Experimenten, die auf den Nachweis seltener Teilchen
ausgerichtet sind, sind eine hohe Ereignisrate und eine schnelle Datenaufnahme zentrale
Aspekte. Eine große Anzahl an Teilchenspuren erfordert eine hohe Granularität der Detekto-
ren, wodurch das zu transportierende Datenvolumen wesentlich erhöht wird. In vielen Expe-
rimenten liegt die typische Datenrate deshalb bei 200 bis 1000 MByte/s.

Die Struktur des Trigger- und Auslesesystems ist bei allen Experimenten ähnlich aufge-
baut: Eine zentrale Instanz generiert ein Signal, das die Auslese von allen Teilsystemen zeit-
gleich startet. Die Signale von jedem einzelnen Kanal des Detektors werden verarbeitet und
digitalisiert, bevor sie zur weiteren Analyse und Speicherung zu einem Rechenzentrum trans-
portiert werden. In manchen Systemen werden weitere Schritte zur Datenselektion durchge-
führt, um die Menge an zu verarbeitenden Daten zu reduzieren.

Der Schwerpunkt dieser Arbeit liegt in der Entwicklung eines neuen Datenaufnahmesys-
tems für das High Acceptance Di-Electron Spectrometer HADES am GSI Helmholtzzentrum
für Schwerionenforschung in Darmstadt. Seit 2002 werden mit HADES Experimente durch-
geführt. In den vergangenen Jahren wurde nun ein Teil der Detektoren ausgetauscht und auch
das Datenaufnahmesystem grundlegend neu gestaltet. Das Ziel der Arbeiten war die Erhö-
hung der erzielbaren Ereignisraten in Schwerionenkollisionen um den Faktor 30 von etwa
700 Hz mit dem ursprünglichen System auf 20 kHz. Bei Experimenten mit leichten Kernen
soll die Ereignisrate auf mehr als 50 kHz gesteigert werden.

Das Grundkonzept der neuen Elektronik basiert auf programmierbaren Logik-Bausteinen,
die über das komplette Detektorsystem verteilt montiert sind. Zwischen den einzelnen Kom-
ponenten werden die Daten mittels optischer Fasern übertragen, um so die Menge an elektro-
magnetischen Störungen in den Detektoren zu reduzieren. Neben der Daten- und Ereignisrate
muss das verwendete Übertragungsprotokoll noch weitere Bedingungen erfüllen. Die Latenz
der Übertragung sollte sehr gering (weniger als 5 µs) sein, um den Austausch von Trig-
gerdaten und Statusmeldungen für jedes aufzuzeichnende Ereignis zu ermöglichen. Weiter-
hin müssen sämtliche Status- und Kontrollinformationen über dasselbe Netzwerk übertragen
werden, da auf Grund der räumlichen Beschränkungen in vielen Fällen nur eine Datenleitung
verfügbar ist. Aus diesen Gründen wurde ein spezielles Netzwerkprotokoll, das Trigger and
Readout-Board Network (TrbNet), entwickelt.

Dieses Protokoll kombiniert alle Schritte der Datenauslese in einem gemeinsamen Netz-
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werk, wobei die Abhängigkeit der einzelnen Funktionen untereinander durch getrennte Ver-
arbeitung auf ein Minimum reduziert wird. Das Netzwerk weist eine sternförmige Struktur
auf: Im Zentrum stehen die Trigger- und Kontrollsysteme, die ihre Informationen an alle Mo-
dule jedes Dektorsystems verteilen. Insgesamt sind 500 solcher Module über den gesamten
HADES Detektor verteilt. Ihre Daten werden durch die Netzwerkinfrastruktur zu 30 Daten-
strömen kombiniert. Diese werden dann mittels eines herkömmlichen Computernetzwerks
(Gigabit Ethernet) zu mehreren Servern (“Event Builder”) weitergeleitet, wo sie kombiniert
und gespeichert werden. Neben den reinen Detektordaten werden auch Informationen zum
Status aller Systeme und mögliche Fehlermeldungen für die spätere Analyse gespeichert.

Das Auslesesystem der Driftkammern stellte besondere Herausforderungen an das Design
der Datenaufnahme: Die hohe Anzahl an Kanälen, die Kompatibilität zu bestehender Analo-
gelektronik und das beschränkte Platzangebot mussten berücksichtigt werden. Im Zuge der
Neugestaltung der Datenaufnahme wurde ein besonderes Augenmerk auf die Verbesserung
und Vereinheitlichung der Kontroll- und Überwachungssysteme gelegt. So ist es nun mög-
lich, jedes Modul individuell anzusprechen und seinen Status abzufragen.

Für das HADES Experiment wurden viele Elektronik-Module neu entwickelt, die nun
auch in anderen Experimenten, insbesondere an der im Bau befindlichen Beschleunigeran-
lage FAIR, und Versuchsaufbauten zum Einsatz kommen. Zur Zeitmessung wurde bei GSI
beispielsweise eine TDC-Plattform (Time-to-Digital-Converter) zur präzisen Zeitmessung
im Bereich von 100 ps entworfen.

Das neue Datenaufnahmesystem von HADES wurde während mehrerer Test-Experimente
mit Gold-Ionen in den Jahren 2010 und 2011 erfolgreich eingesetzt. Hier wurden alle Anfor-
derungen an das System erfüllt und zum Teil noch übertroffen. Die erzielte Ereignisrate lag
bei etwa 13 kHz und war durch die Belastung in den Detektoren und die Beschleunigeranla-
ge limitiert. Die Totzeit der Datenaufnahme lag dabei unter 20%. In Versuchen mit künstlich
generierten Daten erreichte das Datenaufnahmesystem jedoch Raten von mehr als 60 kHz
und 800 MByte/s. Während des Experiments wurden Datenmengen von 250 MByte/s durch
ein System von vier Servern empfangen und gespeichert.
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Abstract

One of the crucial points of instrumentation in modern nuclear and particle physics is the
setup of data acquisition systems (DAQ). In collisions of heavy ions, particles of special in-
terest for research are often produced at very low rates resulting in the need for high event
rates and a fast data acquisition. Additionally, the identification and precise tracking of par-
ticles requires fast and highly granular detectors. Both requirements result in very high data
rates that have to be transported within the detector read-out system: Typical experiments
produce data at rates of 200 to 1,000 MByte/s.

The structure of the trigger and read-out systems of such experiments is quite similar: A
central instance generates a signal that triggers read-out of all sub-systems. The signals from
each detector system are then processed and digitized by front-end electronics before they are
transported to a computing farm where data is analyzed and prepared for long-term storage.
Some systems introduce additional steps (high level triggers) in this process to select only
special types of events to reduce the amount of data to be processed later.

The main focus of this work is put on the development of a new data acquisition system for
the High Acceptance Di-Electron Spectrometer HADES located at the GSI Helmholtz Center
for Heavy Ion Research in Darmstadt, Germany. Fully operational since 2002, its front-end
electronics and data transport system were subject to a major upgrade program. The goal was
an increase of the event rate capabilities by a factor of more than 20 to reach event rates of
20 kHz in heavy ion collisions and more than 50 kHz in light collision systems.

The new electronics are based on FPGA-equipped platforms distributed throughout the
detector. Data is transported over optical fibers to reduce the amount of electromagnetic
noise induced in the sensitive front-end electronics. Besides the high data rates of up to
500 MByte/s at the design event rate of 20 kHz, the network protocol has to fit to further
constraints. The latency of the network must be particularly low to be able to establish
a handshake mechanism between the central control system and front-ends for each event:
5 µs to transport a data packet from the central controller to a front-end or back. Additionally,
the network has to handle all control and monitoring functionality since only one common
communication connection can be afforded due to space constraints. Hence, a dedicated
network protocol, TrbNet, was developed.

The protocol combines all necessary steps of the data acquisition process on one network
connection but keeps the dependency of the types of data low by splitting the data stream
during every step of the transportation. The network is built with a star-like structure: The
center is formed by the trigger and control systems which distribute their signals to all front-
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ends of the individual sub-systems. In total, 500 front-ends are installed in the HADES
detector. Their data is combined in 30 data streams by the network hubs. These streams are
packed into packets sent on Gigabit Ethernet to the server farm (“Event Builders”). Here, the
data streams are finally combined to full events and forwarded to permanent storage. All data
contains error flags from front-ends to notify later analysis processes about possibly missing
or corrupted data.

The front-ends and the data path for read-out of the multi-wire drift chambers (MDC) of
the spectrometer asked for individual solutions with respect to data transceivers and network
features like error correction mechanisms. The main aspects were strict space constraints,
high channel count and a position close to the central part of the detector.

In the scope of the DAQ upgrade the control and monitoring possibilities of all sub-systems
were greatly improved. Now, the status of each individual front-end can be read out. For
example fill-levels of buffers and occupancy of the read-out paths can be monitored to be
able to pin-point all possible errors that might occur during an experiment to their exact
location in the system.

For the HADES DAQ upgrade, numerous new electronic modules have been developed
and are operated successfully in the detector set-up. From these developments other experi-
ments profit as well. For example, the time-measurement (TDC) platform TRB2 is used in
several other experiments as well. Based on this board, a new version of the platform has
been developed recently and provides up to 256 channel with a time resolution in the order
of 10 ps. Additionally, the board can be equipped with AddOn modules to provide further
functionality.

The new DAQ system was tested during several commissioning runs in 2010 and a final
four-day heavy ion beam test in August 2011. The system showed a very good performance
at or above the predefined requirements. The typical event rate was 13 kHz, mainly restricted
by the load on detectors and the capabilities of the accelerator complex. The resulting data
rate was 250 MByte/s and was handled by four servers sharing the load. Benchmarks of the
full read-out chain showed that the system is able to handled event rates above 50 kHz with
low data load and data rates above 800 MByte/s without problems.
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1. Introduction

An artistic view of the HADES detector [1]

1.1. Motivation

The exploration of the phase diagram of strongly interacting matter is one of the main topics
in modern nuclear physics. The current understanding of the different phases of strongly
interacting matter is summarized in figure 1.1. At moderate temperatures and low net-baryon
densities, quarks and gluons form bound states, the hadrons. At high temperatures a phase
transition or cross-over from hadrons to free quarks and gluons, the Quark Gluon Plasma
(QGP), a state of matter that was existing in the early universe, is predicted [2]. At high net-
baryon densities that can be found in the interior of super-compact neutron stars, additional
exotic phases of strongly interacting matter are expected [3]. The only possibility to study
these extreme states of strongly interacting matter in the laboratory are relativistic heavy
ion collisions. During the collision, a volume of highly compressed and heated matter is
produced.

The density and temperature reached in nucleus-nucleus collisions depends on the size of
the collision system and the kinetic energy of colliding particles. The high-energy collider
experiments at LHC (Large Hadron Collider, CERN, Geneva) and RHIC (Brookhaven) focus
on the region of high temperatures and low net-baryon densities. In the energy regime around
1 GeV per nucleon, fixed-target experiments such as at the GSI Helmholtz Centre for Heavy
Ion Research in Darmstadt, Germany, study regions of high net-baryon density. An inter-
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Chapter 1. Introduction

Figure 1.1.: The phase diagram of strongly interacting matter [4].

mediate region will be addressed at the FAIR accelerator complex (Darmstadt) or at NICA
(JINR Dubna, Russia), currently under construction. In this region of moderate temperatures
and finite baryo-chemical potential, the predicted first-order phase boundary and additional
phases of nuclear matter are within reach.

Since a heavy-ion reaction only lasts for very short time (τ ≈ 10−23s ≈ 3fm/c), it cannot
be observed directly. To gain information about the properties of this matter under extreme
conditions, an experiment has to detect particles emerging from the reaction zone. Ideal
probes are particles that are produced and decay within the hot and dense phase of the col-
lision. Such a probe are light vector mesons. These mesons, more precisely the ρ, ω and ϕ

mesons, have a short life-time of less than 50 fm/c. Their daughter particles have to transport
the information from the early stages of a nuclear collision until they can be detected by the
experimental setup. In the ideal case, they do not undergo any further interactions with other
particles. Hence, a leptonic final state is preferred over a hadronic one due to the fact that
leptons interact only electromagnetically with the surrounding hadronic medium. The chal-
lenge of measuring the decay channel into leptons is that it is suppressed typically by four
orders of magnitude compared to hadronic decays. In order to reconstruct the signal from
such rare probes, a huge number of collisions has to be analyzed.

1.1.1. Instrumentation

A typical experimental instrument to record experimental data in nuclear and particle physics
are spectrometers. The trajectory, momentum, charge and energy of each particle can be mea-
sured and used for particle identification. Due to the very different properties of the particles,
a spectrometer consists of various layers of dedicated detectors. The required precision and
granularity is defined by the aspects of the reactions the experiment aims to analyze.

The trajectory of a particle can be determined with a tracking system. Commonly chosen
technologies are silicon micro-pattern detectors (e.g. CBM-STS [5]) or gas-filled detectors
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1.1. Motivation

(e.g. drift chambers, time projection chambers (TPC), straw tubes). These detectors are
organized in several layers and the particle track can be reconstructed from the position of
the hits in the individual layers. Another option are detectors that are able to record a track in
three dimensions like Time Projection Chambers as used in the STAR1 [6] and ALICE2 [7]
experiments. The tracking system can additionally identify the momentum of particles when
placed inside or around a magnetic field that deflects all charged particles.

The velocity of particles is determined by a time-of-flight detector system that measures the
arrival time of individual particles. Here, scintillator strips or resistive plate chambers provide
the necessary high time resolution. Both types of detectors are used in the HADES setup and
are explained in section 2.1.1. The energy of particles can be measured by calorimeters.

Many experiments base on a reliable identification of distinct particle species so that their
setup is complemented with dedicated detectors like Cherenkov detectors (e.g. HADES
RICH) for light particles or massive absorber blocks that filter all particles despite muons.
Most detectors are blind for non-ionizing particles so that the detection of neutral particles
is possible only if the neutrons and photons are converted to charged particles by nuclear or
electromagnetic processes. This can take place in specialized detectors such as calorimeters
or neutron detectors.

1.1.2. Data Acquisition

The electronics needed to operate and read out the detector systems are diverse and typically
depend on the detector type. Typically, in a first stage analog electronics is used to amplify
the small electric signals generated inside the sensitive part of the detector. Since the typical
charge generated in, e.g. a gaseous detector, is less than 1 pC, these electronics have to
be very sensitive and located closely to the detector to improve signal quality. The next
processing stage is usually formed by a shaping and discriminating stage that modifies the
raw signal such that it can be quantitatively evaluated. For example, the charge deposited
in a detector over a time span of several hundred nanoseconds can be integrated in a first
step. Subsequently, the resulting signal height can be converted to a signal length that can be
measured in time-to-digital converters (TDC).

The next step of signal processing is the digitization of data, either in TDCs to measure the
timing of the signal, or in an analog-to-digital converter (ADC) to measure signal heights.
Some detectors require special converters, like direct charge-to-digital conversion (QDC).
Silicon detectors, on the other hand often include the digitization circuits on the same chip as
the sensitive area.

All sub-systems of a spectrometer have to be operated in a synchronous way to correlate
hits from individual detectors to one common event. In most cases, this is accomplished
by using a trigger system. A central instance determines, if a reaction took place and sends

1STAR: Solenoidal Tracker At RHIC, BNL, Brookhaven
2ALICE: A Large Ion Collider Experiment, LHC, Cern
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a synchronization signal to the sub-systems which start the read-out process for this event.
The time window until the trigger decision has to be available is typically very short (less
than 1 µs) due to the characteristics of the front-end electronics. Hence, only simple and fast
computations can be included in the generation of the signal. The method how this trigger
is generated varies depending on the purpose of an experiment. A fixed-target experiment
might use a dedicated detector that registers each beam particle passing through.

Since only few particles undergo an interaction within the target, this method yields in
many empty events being read out so that more information needs to be included in the deci-
sion. Further raw signals from the detectors can be taken into account in this case. Dedicated
hardware, e.g. analog adders can be used to generate a multiplicity signal, i.e. how many par-
ticles were detected to select only a subset of all events. Typically the most central collisions
of two nuclei were a large number of particles is produced are of special interest. Digital
electronics allows to run more advanced algorithms like defining regions of interest inside
the full detector acceptance as used in the ALICE LVL1 trigger [8].

In many experiments, additional steps of event selection are added in further trigger levels.
Due to the already reduced amount of data, a more detailed analysis of the data can be
performed. In the ATLAS3 experiment located at the LHC, for example, the first level trigger
reduces the primary interaction rate of 40 MHz to 75 kHz, the second level trigger cuts down
the rate to 3 kHz and a third level selects events for full analysis at a rate of 200 Hz [9].

A rather new read-out concept is a so-called free-running DAQ: All channels of the detec-
tor are read out continuously and data is sent to a server farm. Only here data is combined
to events and a first selection is made. Due to the large data rates that can be more than 500
GB/s, this set-up is only feasible with huge computing grids and for experiments running at
high event rates like planned for CBM4 [10].

Another important step is transporting data from the front-ends to a central storage. The
amount of data recorded with current spectrometers is typically in the order of 100 MB/s to
2 GB/s (e.g. PHENIX5 1.8 GB/s [11], ATLAS 300 MB/s [9]). These data rates can not be
handled by a single server, so sever farms are used to process all data.

The computing needs are further increased by the data analysis which is the last step of
a typical spectrometer experiment. Depending on the experiment, data is either analyzed in
real-time, or stored for later analysis. During analysis, data from all sub-systems is combined
and distinct data points are matched to reconstruct particles and their trajectories. Based on
this information, conclusions on the physical properties of matter and particles under various
conditions can be drawn.

3ATLAS: A Toroidal LHC Apparatus
4CBM: Compressed Baryonic Matter Experiment at FAIR
5PHENIX: Pioneering High Energy Nuclear Interactions eXperiment, BNL, Brookhaven
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1.1.3. Technology

Despite analog signal processing electronics in the proximity of the sensors, a major part of
data acquisition systems is based on digital logic. Even though the front-ends have to be
adapted to specific needs, in many experiments it is possible to use a common structure of
the data acquisition system for all sub-systems. The implementation of this digital part can
be accomplished in various technologies.

One choice are micro-processors like DSPs6. Due to the need of high I/O band-width but
comparably low computation performance, they can not easily be utilized in many systems.
Full flexibility is provided by custom designed ASICs7. Here, all special requirements can
be implemented without limitation from commercially available devices. In high-rate experi-
ments, the radiation tolerance needed for all front-end electronics can usually not be provided
by commercial devices so that ASICs are the only viable possibility. Due to their high offset
costs and long development time compared to other, new technologies available since few
years, the usage is not feasible for many experiments.

This third option are Field Programmable Gate Arrays (FPGA). FPGAs are integrated
circuits that can be programmed to provide any logic functions. The structure consists of
a matrix of several thousand basic blocks (slices) that can be connected with each other
by a huge set of connection wires. Each slice consists of a small look-up-table with typi-
cally four or six inputs that generates one output signal based on any possible logic function
on the input signals. It is complemented with a flip-flop as storage element. Additionally,
most FPGA provide dedicated function blocks like blocks of memory, multipliers or even
serializer-deserializer (SerDes) blocks that can be used to interface with serial data links.

The typical clock speeds reached with FPGA are in the order of 50 to 200 MHz. Although
the clock speed is comparably slow, an FPGA can reach high over-all computation speeds
since all functions run in parallel. This is especially true for algorithms that can be pipelined,
i.e. functions that can be split into several steps that can be computed serially. Most data
pre-processing and data transport operations fall into this category.

The functionality to be implemented in an FPGA is described using a dedicated language,
VHDL (Very high speed integrated circuit Hardware Description Language) [12]. VHDL is,
as stated in its name, not a programming language as used to define a program for a micro-
processor. It is rather a language to describe and simulate of logic circuitries. One special
feature of VHDL is that it can be used to represent logic functions that are implementable
in an FPGA by a dedicated tool chain. The configuration of the FPGAs8 can be stored in a
small flash memory.

The additional electronic devices on the front-end boards have to be chosen to fit to the

6DSP: Digital Signal Processor
7ASIC: Application-Specific Integrated Circuit
8In a strict sense “configuration” is the only term applicable for the logic design loaded into an FPGA. In this

work I use also “design” and “firmware” as synonyms describing the internal configuration of an FPGA.

5



Chapter 1. Introduction

requirements of each detector. Hence, no common selection for all boards is possible. Nev-
ertheless, complexity of the system and development time can be greatly reduced by reusing
the same hardware platforms throughout the whole system. As an example, the LHCb ex-
periment uses detector-specific front-end cards that send their data to one common read-out
platform, “TELL1” [13], that pre-processes and forward data to the DAQ system. The board
consists of five FPGAs that share the tasks of data processing and communication with the
DAQ system. The front-end specific interface can be added to the platform with AddOn
cards.

Data Transport

A challenge in all modern nuclear and particle physics experiments is the design of the data
transport network. Besides the band-width for data transport and error tolerance, the network
latency is of particular concern for triggered DAQ systems. In many cases, no commer-
cial solutions can be found in view of dictated design aspects like compatibility or radiation
hardness. In these cases, a protocol has to be custom designed.

On the other hand, the data transport between the detector system and the computer farm
can be based on a widely available standard, e.g. Gigabit Ethernet (GbE). In this part of the
network no special timing requirements have to be fulfilled so that typical latencies of several
hundered microseconds can be accpeted. Data is transported in a single direction only and
no direct feedback from servers to the DAQ system has to be foreseen.

The LHCb experiment uses also an approach with two data networks [13]: All fast, timing
critical information such as triggers, control messages and synchronization are handled by a
dedicated data bus [14] while all data transport from the pre-processing modules is covered
by a GbE installation. Even though the total data rate of 35 GByte/s from 300 read-out
nodes has to be routed to a farm of 500 data processing servers, a single Ethernet network is
able to handle all traffic [15]. This demonstrates the scalability of a commercial network for
experimental setups with very high data rates.

The data transmission hardware to transport data between different modules of the system
can be based on two basic technologies: electrical signal transmission on copper wires or op-
tical transmission using glass fibers. Compared to electrical signals, optical data transmission
has several advantages. First of all, optical signals do not produce any electromagnetic noise
which might have an influence on the detector. Vice versa, the optical signals themselves
can not be distorted by external noise sources. The two transceivers used on both ends of a
connection are the only places in which noise can have an influence on data integrity 9.

Optical fibers can be operated at data rates of more than 5 Gbit/s per link while electri-
cal signals usually have to be split over several shielded wires and differential transmission
standards have to be employed. The optical fibers have a diameter of 2 mm and are much
smaller than electrical wires capable of the same data rates, fitting to tight space constraints

9This was observed in the HADES network and taken account for as shown in section 3.3.4.
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as found in many experiments. These differences characterize optical fibers as the technology
of choice for a modern DAQ system.

1.2. Overview

The main goal of this work is to develop, implement and commission the new data acquisition
system for the HADES experiment.

In chapter 2 the HADES experiment is described and the requirements on the new data
acquisition system are determined. Based on these requirements, it is discussed which tech-
nologies are chosen and the electronics that have been developed are described. Finally, an
overview over the complete data acquisition system setup is given.

A network protocol that matches all requirements and provides a reliable data transmission
between diverse electronic platforms distributed in the detector setup was built up. A brief
description on all network features is given in chapter 3.

The following chapters are devoted to three major blocks contained in the data acquisition
system: Trigger generation and distribution (chapter 4), data read-out from front-ends to data
servers (chapter 5) as well as the slow control system (chapter 7). A special focus is put on
the front-end control system of the MDC sub-system which is described in detail in chapter 6.

Finally, performance values obtained during commissioning runs are shown in chapter 8.
Furthermore, additional developments and possibilities for future upgrades of the system are
analyzed therein.
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2. The High Acceptance Di-Electron
Spectrometer (HADES)

2.1. The HADES Experiment

The High Acceptance Di-Electron Spectrometer (HADES) at GSI is one of the experiments
built to study properties of matter at finite net-baryon density. Being designed as a general
purpose spectrometer with an emphasis on di-electron measurements in both elementary and
heavy ion collisions, the HADES detector has to fulfill diverse requirements.

In a central Au+Au collision at energies of 1 to 2 AGeV, about 200 charged particles are
emitted from the reaction zone. The reconstruction of their trajectories requires high gran-
ularity of the tracking and particle identification system. As mentioned before, the leptonic
decays of vector mesons are strongly suppressed compared to the hadronic decay channels.
This calls for both a high rate capability of the whole detector system as well as an effi-
cient particle identification to apply filters to select the events of interest. Furthermore, a
high geometric acceptance is required to achieve a high probability to detect lepton pairs.
The geometrical acceptance of the HADES experiment covers polar angles between 18° and
85° and provides an almost complete coverage in the azimuthal angle.

The HADES detector setup comprises of different detector types. The central part of the
experimental setup is formed by the tracking system consisting of four layers of multi-wire
drift chambers combined with a magnetic field. Charged particles can be identified by time-
of-flight measurements in a Time-of-Flight (TOF) wall and Resistive Plate Chamber (RPC)
detectors. The identification of electrons is further improved by a Ring-Imaging Cherenkov
detector (RICH) and a pre-Shower detector. The hadrons not interacting during a collision,
so-called spectators, are detected by a Forward Wall Hodoscope that covers polar angles
below 7°. The full setup is shown in the cross-section of the HADES detector in figure 2.1.
All detectors are described in the following sections. More detailed information can be found
in [16].

2.1.1. The Detector System

Start and Veto Detectors

The hadron identification based on time-of-flight measurements relies on a precise determi-
nation of the time of the primary collision. Additionally, the triggered read-out system of

8



2.1. The HADES Experiment

Figure 2.1.: The HADES spectrometer consists of several independent detector systems.
Tracking of particles is provided by four layers of multi-wire drift chambers and
a magnetic field. Particle Identification is done by the time-of-flight and RPC
detectors in combination with the electron identification provided by RICH and
pre-Shower detector. A start detector measures the reference time of an interac-
tion and the Forward Wall (positioned 7 m downstream from the target, not to
scale) detects all particles at low polar angles.

HADES requires a start signal once a reaction took place.
These two requirements are met by two diamond detectors [17], Start and Veto, mounted

in front of and downstream the target behind the RICH detector, respectively. The Start
Detector placed in front of the target generates a signal for each beam particle before it enters
the target region.

The target is usually designed for an interaction probability of about 1%. Thus, most
particles traverse the target region without any interaction. These particles are registered by
the Veto detector. Both detectors are segmented into eight individual channels as shown in
figure 2.2. Hence, the position of the beam can be monitored accurately and re-adjusted if
necessary.

Based on the hit information from both detectors, the central trigger system is able to
distinguish the interacting particles from all other beam projectiles and generates triggers for
actual collision events only. The timing measurement is performed by fast Time-to-Digital
converters (TDC) [18] with a binning of 25 ps while the intrinsic time resolution of the
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Figure 2.2.: The Start Detector is composed of a 8-fold segmented diamond detector placed
in front of the target region. A similar diamond is used as Veto detecor [17]. The
electronics surrounding the detector provide a first amplification of the small
signals generated inside the diamond by particles passing through.

detector is about 30 ps for heavy ions [19].

Electron Identification Detectors

The Ring Imaging Cherenkov Detector (RICH) [20] is used for electron identification and
placed around the target region. It consists of a large volume filled with C4F10 as radiator
gas. It has a refraction index of n = 1.0015 [21] so that all particles with a Lorentz factor of
γ > 18.3 produce Cherenkov radiation in the detector. This corresponds to a threshold energy
of 9.3 MeV/c2 for electrons and 2.6 GeV/c2 for pions. Hence, all electrons but only very few
high energetic hadrons generate Cherenkov radiation resulting in a high pion suppression
factor in the order of 103.

The produced light cone is reflected by a mirror onto a plane of multi-wire proportional
chambers residing in a separated gas volume. Here, the ultra-violet photons are converted
to electrical signals on a CsI coated pad plane, amplified and read out using over 4,700
individual channels per sector. A cross section of the detector is shown in figure 2.3.

The second stage for electron identification is introduced by the pre-Shower detector [22],
mounted as the outermost part of the spectrometer at polar angles between 18° and 44° . It
consists of three layers of wire chambers with lead plates mounted in between.

All charged particles traversing the lead plates lose energy by emitting bremsstrahlung.
These bremsstrahlung photons trigger an electromagnetic shower which is detected in the
wire chambers as depicted in figure 2.4. Hadrons produce only few additional particles,
while electrons produce many orders of magnitude more particles. Hence, electrons and
hadrons can be distinguished by comparing the charge entry in all three layers of the detector
for each track.
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Figure 2.3.: The Ring Imaging Cherenkov Detector. [21]

In the wire chambers, all charged particles produce electron - ion pairs in the detector gas.
An electric field separates these charges. The electrons are amplified in the high-field region
of the anode wires and influence a signal in the pad planes which is further amplified and
read-out. The detector consists of a grid of 942 read-out pads per detector plane and sector.

The Tracking System

The tracking of carged particles is provided by a set of multi-wire drift chambers (MDC) [23]
and a magnet [24]. In each sector of the detector, four chambers are mounted. Two are placed
in front of the toroidal superconducting magnet and two behind. The particle tracks are bent
by the magnetic field so that their momentum over charge ratio can be determined.

In each chamber, the charged particle passes through a gas filled volume, produc-
ing electron-ion pairs by electromagnetic interaction with the shell electrons of the gas
molecules. These charges are amplified, transported to sensor wires and read-out using the
same mechanism as in the Shower detector.

Each MDC chamber is composed six layers of sensitive wire planes with different wire
orientation to provide two-dimensional coordinate information in each chamber.10. The par-
ticle trajectory can be found by searching for the crossing point of fired detector cells. The
drift velocity of electrons inside the gas volume is about 4 cm/µs. Hence, a more precise po-

10The angles are ±40◦, ±20◦ and 0◦ (two layers)
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Figure 2.4.: A cross section of the pre-Shower detector. Charged particles are detected by
three layers of wire chambers. Electrons produce a shower of charged particles
due to bremsstrahlung conversion in lead plates. [22]

sition information is given by the arrival time of the electron cloud at the wire. The resulting
spatial resolution is in the order of 100 µm.

The total number of channels inside the detector is 25,96411. Typically, each charged
particle causes signals in 40 drift cells [25]. Hence, the MDC forms the biggest sub-system
of the HADES detector not by means of individual channels but by active channels per event.

The Time-of-Flight System

The time-of-flight wall (TOF) [26] provides trigger information and particle identification
for hadrons within a polar angle between 44° and 88°. Each sector consists of 64 scintillator
bars organized in 8 modules. A charged particle passing through the detector produces light
that is guided to both ends of the rod. Here, the light is amplified by photomultiplier tubes.

From the measurement of both, time and signal amplitude12, the precise arrival time, the
position on the bar and the energy deposited in the scintillator can be deduced. The time
resolution of the detector is 150 ps [16].

The lower polar angles between 18° and 44° are instrumented with resistive plate chambers
(RPC) [27]. It replaces the Tofino detector which was in use until 2007 and provided four
channels per sector only and a time resolution of 420 ps [16]. The low granularity and spatial

11The total number of read-out channels is 27,648, but not all channels are actually connected to the detector.
12First, a conversion circuitry is used to convert the signal amplitude to a signal length, then the signal is mea-

sured by a TDC

12



2.1. The HADES Experiment

Figure 2.5.: One cell of the RPC detector. It consists of three aluminium electrodes separated
by two glass plates. The inner aluminum plate is connected to a high voltage
power supply. Both ends of the cell are connected to read-out circuits. [29]

resolution is not sufficient for measurements in heavy ion collisions due to the high particle
multplicity. Compared to that, the new RPC detector features 372 channels per sector and a
time resolution of 75 ps [28]. One cell of the RPC detector is shown in figure 2.5.

The Forward Hodoscope

The Forward Wall is a hodoscope consisting of a total of 287 scintillator blocks. Placed 7 m
behind the target the detector covers polar angles below 7°. The granularity of detector cells
varies from small cells (4 cm × 4 cm) near the beam axis to large cells (16 cm × 16 cm)
at larger polar angles according to the expected particle flux. The forward wall has been
installed in 2007 and provides the measurement of low pt particles such as spectators that do
not interact within the target.

2.1.2. The Former Data Acquisition System

The original HADES data acquisition system was intended to operate at the highest beam
intensities available at SIS18 of 108 particles per second in combination with an interaction
rate of about 1% in the target. In order to reduce the high event rate to a reasonable amount
of data, HADES was designed with a three level trigger system [30].

The first stage was a multiplicity trigger generated by a given amount of particles in the
time-of-flight wall. Depending on the physics case, the trigger rate can be reduced to about
10% of the reaction rate by selecting events with high particle multiplicity only. The second
stage was built to perform a first data analysis to identify events with electron candidates.
Here, the so-called Image Processing Units (IPU) searched for electron signatures in RICH
and Shower detectors. Combined with hit information in the time-of-flight wall a rough
momentum estimation and the charge of all electron candidates could be determined in the
Matching Unit (MU). Subsequently, selection criteria for interesting events were applied.
This trigger stage was supposed to be able to reduce the trigger rate by two orders of mag-
nitude. The result was an event rate of 1 kHz and about 15 MByte/s data volume. A third
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Figure 2.6.: The former HADES Data Acquisition System used until 2008. Triggers were
distributed by the CTU to detector specific trigger modules (DTU). Data were
stored in several pipeline stages until the trigger decision was available. The
data transport backbone was formed by VME crates and an ATM switch [30].

trigger level was planned to provide higher level analyses and to further reduce the amount
of data recorded but was never realized.

Trigger signals were distributed by the Central Trigger Unit (CTU) to detector specific
trigger controllers (Detector Trigger Unit) which send read-out control signals to the front-
ends. All data and control signals were transported over parallel buses, the interconnect was
provided by flat cables. Data were stored in several pipeline stages until the trigger decision
was available.

All data processing modules were mounted in VME crates that used the integrated data
busses for data transport. A CPU received this data and forwarded it to a server (Event-
builder) that stored the data on tape. The data paths in the LVL2 and later stages were de-
signed to transport the predicted amount of data. In combination with the planned event rates
at that time, this is only sufficient if the expected suppression factor in the two first trigger
stages is about 1000. The developed trigger algorithms were not as efficient as expected, so
that this aim was not reached. The main reasons were the insufficient purity of electron can-
didates and the quality of rings produced in the RICH detector as well as the many electrons
resulting from conversion of photons inside the detectors. The highest suppression factor
in the LVL2 stage reached was 3 instead of a factor 100 projected. As a result, the LVL2
stage was skipped in later experiments and only multiplicity triggers were implemented in
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Year System Energy Events (rec./LVL1)

2002 C + C 2 AGeV 0.2×109 / 0.6×109 [32]
2004 C + C 1 AGeV 0.6×109 / 1.1×109 [31]
2005 Ar + KCl 1.765 AGeV 0.9×109 / 2.2×109 [34]
2006 p + p 1.25 GeV 0.9×109

2007 p + d 1.25 GeV 2.0×109

2007 p + p 3.5 GeV 1.1×109

2008 p + Nb 3.5 GeV 4.2×109

Table 2.1.: Between 2002 and 2008 several experiments with different collision systems and
beam energies have been conducted using the HADES spectrometer. The number
of events recorded is shown, in experiments in which a LVL2 trigger was used,
also the number of LVL1 triggers is given.

the LVL1 stage. Due to the width of data paths high event rates can not be achieved and the
total rate was limited to approximately 10 kHz for light systems and estimated 0.7 kHz for
Au+Au collisions.

2.1.3. Experimental Program

Between 2002 and 2008, several experimental runs were performed with the HADES spec-
trometer. Various collision systems at different beam energies have been investigated. The
full list of experiments is given in table 2.1, test runs are not listed. low

The first runs using carbon induced reactions at 1 AGeV [31] and 2 AGeV [32] respectively
were performed to confirm data that has been taken by the DLS collaboration [33]. Next,
the medium sized system Ar+KCl [34] was measured. A comparison to measurements in
elementary reactions conducted in 2006 and 2007 allows to draw conclusions on the origin
of virtual photons in elementary collisions. Lastly, an experiment with cold nuclear matter at
saturation density was made in 2008 with p+Nb reactions.

The di-electron production measured in the two C+C experiments showed a significant
excess in the mass region between 150 MeV/c2 and 500 MeV/c2 compared to all theoretical
models available at that time. As a comparison the p+p and n+p experiments were done.
These showed that the enhancement in C+C collisions can be explained by an overlay of
elementary collisions [35].

The next heavy-ion system measured with the HADES experiment was Ar+KCl with about
40 particles per nucleus. Here, an excess in di-electron production above the value extrap-
olated from elementary collisions was found [34]. In the medium mass region the enhance-
ment factor is about 2 – 3 as shown in figure 2.7.

From these results, several questions arise: How does the excess change when going to
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Figure 2.7.: Exemplary results for di-electron production in Ar+KCl at 1.76 AGeV [34]. Fig-
ure (a): An excess over the up-scaled production rates in elementary reaction of
about 2 – 3 was found. Figure (b): A zoom on the ω pole mass region. In both
figures the quite low statistics are visible through error bars. These are in the
order of 50% in the ω region.

larger systems such as Au+Au? How does the excess scale with energy? Is there a difference
between central Ar+KCl and peripheral Au+Au collisions with the same number of partici-
pants? The first question can be addressed at the current accelerator complex at GSI which
is able to deliver any particle beam, including Au beams up to 1.25 AGeV. Higher energies
of up to 10 AGeV can be achieved at the FAIR accelerator SIS100 which is currently under
construction.

The observed excess can be further investigated by multi-differential analyses that divide
data into several classes depending on various observables. E.g. a possible anisotropy in
the angular distribution could point to non-thermal production mechanisms. The statistical
errors indicated in figure 2.7 as vertical bars demonstrate that a multi-differential analysis
is not feasible with data currently available due to the comparably low statistics. Already
without further differentiation, the error on the count rates is in the order of 50% in the
vector meson region. Here, higher statistics help to improve the extracted production yields
and allows for a better background determination. This is especially important for ρ meson
measurements due to its very broad shape.

16



2.2. The New Data Acquisition System

Future Experiments

During the next years several heavy ion experiments are planned. The series will start in
2012 with Au+Au reactions at the highest beam energy available at SIS18, i.e. 1.25 AGeV13.
In the following years experiments with other heavy systems such as Nickel and Silver are
scheduled. A measurement of pion induced reactions is planned as well. Here, a secondary
pion beam is generated in a production target placed about 20 m upstream from the HADES
experiment target.

For a second set of experiments HADES will be moved to the CBM14 cave at the SIS100
accelerator of the FAIR facility which will be completed in 2017. The new accelerator is
able to provide particles with energies of up to 11 AGeV for heavy ions and 30 GeV for
proton beams. HADES experiments with various systems at energies between 4 AGeV and
10 AGeV are planned [37].

Almost all proposed experiments can not be done using the old HADES data acquisition
system due to performance reasons. The system was able to reach about 10 kHz for p+p
collisions and 3 kHz during the Ar+KCl run. In the latter case the limiting factor was the total
data throughput which was limited to about 15 MByte/s [16]. For heavy ion experiments the
number of particles produced and following the amount of data per event scales linearly with
the number of participating nucleons in the collision. Hence, a central Au+Au collision (197
nucleons each) produces about five times more particles than in Ar+KCl (40 nucleons each).

Since the data rate limit can not be overcome without major changes in the data acqui-
sition system, the achievable event rate drops to about 700 Hz. As experienced in former
experiments, the integrated number of events recorded during a full experiment is a factor
4 lower due to the acceleration cycle of the synchrotron, failures in one of the systems or
parallel running experiments. This rate results in less than 0.25×109 events collected during
a typical four-week experimental run which is not sufficient for a detailed analysis.

The HADES detectors were built to withstand interaction rates of up to 1×106 and achieve
read-out rates well above 50 kHz. These rates can be achieved by a complete upgrade of the
now already ten year old electronics. This upgrade, including electronics and data transport
protocol is the main topic of this work.

2.2. The New Data Acquisition System

2.2.1. Requirements and Constraints

Data Rates

The most central design criteria of every data acquisition system are the data and event rates

13The theoretical limit of SIS-18 with a magnetic rigidity of 18.5 Tm is an energy of 1.5 AGeV for Au79+ but
needs a two-step acceleration with intermediate beam cooling in the Experimental Storage Ring (ESR) and
has a limited duty cycle and beam intensity [36].

14CBM: Compressed Baryonic Matter
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Year System

2012 Au+Au at 1.25 AGeV
2013 – 2015 (SIS18) p+π, Ni+Ni, Ag+Ag at up to 2 AGeV
2017 – (FAIR) p+p, C+C, Ca+Ca, Ni+Ni at 4, 8 and 10 AGeV [37]

Table 2.2.: Planned experiments with the HADES detector include runs at the current SIS18
accelerator as well as experiments at the upcoming FAIR facility

that are to be achieved. In an ideal case, the event rate is limited by the detectors but not
the DAQ system. First estimates for the total data rates to be expected can be obtained
from simulated Au+Au events. Depending on the centrality of the collision, the number of
particles produced varies. Here, a selection of 25% most central events was assumed [38].
For this centrality class at energies reached at the SIS-18 accelerator, on average 110 charged
particles are emitted within the acceptance of the HADES experiment. For the most central
collisions, the number can be up to 140 particles per event.

In the TOF and RPC detector, each charged particle generates two signals in the detector15.
For each signal, two values are measured, corresponding to the time and amplitude. For each
hit in a drift cell, the time when the signal corsses the threshold and the time above the
threshold is recorded. The drift chambers consist of 24 stacked layers of sensitive volumes
which the particle has to pass through, resulting in a large number of cells delivering data.

In case of the RICH and Shower detectors the total number of fired channels is extrap-
olated to the desired particle multiplicity from earlier measurements with smaller collision
systems. A summary of the expected hit occupancies is given in table 2.3. For all detectors
combined, about 6,000 channels of the detector are expected to deliver data per event. For
all detectors, data from each channel is encoded in one 4-Byte data word resulting in a data
size of 25 kByte of data per event. Additional data headers contain further addresses for the
individual subsystems summing up to a total event size of 27 kByte per central Au+Au event.

The design event rate for heavy ion collisions is 20 kHz, so that the total data rate will be
about 550 MByte/s. Typically, not only central but also a fraction of minimum-bias events
will be recorded. Assuming a contribution of 50% minimum-bias events [38] with an average
event size of 14 kByte/s, the final design data rate is reduced to 410 MByte/s. This rate is
not necessarily higher than the average data rate since all front-ends will contain data buffers
that balance short-term fluctuations in the event rate.

This data has to be transported to the server farm located 20 m far from the experiment
outside of the cave. Here, data has to be distributed to several servers. An industry-standard
technology using off-the-shelf components should be employed to guarantee high compati-

15Each particle hits one detector cell which has read-out electronics on two sides to determine precise position
information.
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System Channels Occupancy Words/Evt kB/Evt MB/s @ 20kHz

MDC 25964 0.17 4500 18.0 360
RICH 28272 0.015 430 1.7 35
TOF 768 0.15 1501 0.6 12
RPC 2232 0.07 5101 2.2 44

Shower 16956 0.025 500 2.0 40
Others 316 200 0.8 16

Headers 500 2.0 40
Total 74504 6800 27 kB/evt 550 MB/s

Table 2.3.: Estimated data rates for simulated 20 kHz central Au-Au collisions [25].(1) in-
cluding the measured reference times.

bility and the possibility of future upgrades.

Trigger Rate and Dead Times

The HADES detector was designed as a triggered experiment. This read-out scheme was
kept also during the upgrade program for two reasons. First, the required event rates are
reachable with the common triggered architecture. Second and more important, a change
to a different read-out scheme would require an almost complete exchange of all front-end
electronics since most of them must be operated in a triggered mode with variable dead-times.

At 20 kHz event rate, the mean time between two recorded events is 50 µs. Since the
particle beam delivered from the accelerator is not uniformly distributed but follows a statis-
tical process, the dead-time of the detector system has to be significantly lower. Furthermore,
there are additional fluctuations in beam intensity caused by the extraction process (compare
also figure 8.4). To be able to record a high fraction of all events, the dead-time has to be
restricted to a much shorter time, i.e. ideally 15 µs, corresponding to an event rate of 66 kHz
uniformly distributed.

During this time, the trigger information has to be transported to the front-ends and the
busy-release (see section 4.1) has to be transported back. Additional time is needed for
both the CTS to generate the trigger signal and the front-end to process the event until the
busy-release can be sent. Hence, the data transmission latency from the central systems to
front-ends and vice-versa is limited to less than 7 µs.

On short time-scales, both the trigger rate and the amount of data produced with one event
are not constant but varying within a wide range. To accomodate for these changes, the front-
end modules should contain a reasonably sized data buffer to even out these fluctuations and
lower the peak data rate for read-out.

All sub-systems rely on precise time information for each event for measurement. Conse-
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quently, a central unit has to send a reference time signal with low time jitter. This signal is
generated from analog signals from various detector channels that are combined to detect if
an event took place. Here, the trigger decision is to be implemented in an FPGA in order to
have a flexible setup that can be optimized during a run if necessary.

In the next step, the reference time signal has to be distributed to all detectors with a very
high timing precision. The jitter must be substantially below the intrinsic timing resolution
of the detectors which is less than 30 ps in case of diamond detectors [17]. Additionally, the
signal has to arrive at the front-ends within a narrow time window after an event took place.
E.g. the pre-Shower detector has to be supplied with the signal within less than 500 ns [39].
This time window is given by the analog signal processing that has a peaking time of 500 ns
and needs to trigger a sample-and-hold stage to keep the signal until digitization can take
place.

Data Transport

The demands on data rates and especially data transport latencies in the HADES DAQ require
the use of a dedicated network protocol. Other, commercially available protocols were eval-
uated but often rely on fixed hardware components, are not platform independent or are not
suitable due to space constraints. The protocol has to be able to handle trigger information,
data read-out as well as control and monitoring functions on one physical connection. Here,
the three types of information have to have different priorities assigned and the interference
between them has to be kept at a minimum. Hence, a special network protocol, TrbNet, has
been developed [40]. An overview of the features of TrbNet is given in chapter 3.

The data transport between the detector and the server farm is based on commercial Gigabit
Ethernet solutions. One GbE link is able to transport about 110 MByte/s only, but the total
data rate of 400 MByte/s in the HADES detector can easily be handled by splitting the data
stream over several connections. The central routing of data streams to different servers is
done by a 10-GbE network switch. Additional switches are used to combine data streams
from several subsystems onto one GbE connection. These switches feature both optical and
copper connections and operate as media converters between the optical signals sent by the
DAQ electronics and the copper cables used to transport data to the server room.

The full HADES data rate can not easily be handled by a single software core. Splitting
the data stream to eight or more data servers reduces the data rate to 50 MByte/s and can
be handled by one software process. Additionally, the data can be written to a single hard
drive without data losses. Modern multi-core processors are able to handle several of these
processes on one machine so that the amount of servers is reduced to two to four. Again, a
normal 10 GbE switch can manage the distribution of data to different physical servers.

Further Constraints

Constraints on the amount of space for both the front-end electronics and cables apply espe-
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Parameter Description

Data rate 400 MByte/s sustained data rate
Dead time 15 µs average dead time per event (Au-Au)
Latency < 500 ns delay on reference time distribution

< 7 µs for trigger information distribution
Front-ends 500 front-end read-out controllers
Distance 40 m endpoint-to-endpoint in main DAQ network

Table 2.4.: Summary of all main requirements on the HADES data acquisition system.

cially on the read-out for the two innermost MDC planes. The front-end electronics need to
be placed on the frames of each chamber and outside of the acceptance of the detector. The
free space for the read-out controllers are about 4 cm times 5 cm only. Additionally, all data
transmission and power supply cables have to run through a small gap. The technology used
has to be selected to minimize the electromagnetic influence on the detector to reduce the
background noise in the system.

2.2.2. Electronics

The HADES DAQ upgrade addresses two major parts: data transmission and control systems.
The third part of the DAQ system, front-end electronics and analog signal processing will
mainly be based on the electronics used in the existing setup and is not within the scope of
this work.

The read-out controllers for the HADES front-end electronics need to fulfill diverse tasks.
The trigger and busy-release architecture of the DAQ system puts hard real-time constraints
on the operation. Receiving data from the digitization circuits usually involves data streams
running at speeds of 100 MHz or more and using custom communication protocols. The
number of required I/O lines per read-out controller is above 100 using varying signaling
standards. Field Programmable Gate Arrays (FPGA) provide the necessary flexibility in
programming and amount and type of input and output signals along with highly parallel
operation. The form factor of available devices also fits to the space constraints found for the
MDC read-out controllers.

All data transmission will be based on bi-directional optical links. The use of industry stan-
dard transceiver modules guarantees the wide availability of devices and later upgradability
of the system. Here the SFP (Small Form-factor Pluggable) standard provides the interface
to different plug-in modules for data transmission. Besides several types of transceivers for
different purposes and speeds, also adapters for different types of electric cables are avail-
able. In the HADES setup mostly Optoway SPM-8100WG SFP transceivers [41] that are
capable of data transmission at speeds of up to 4.25 Gbit/s and line lengths of up to 500 m
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are used. The MDC read-out controller can not house an SFP connector due to its size. Here
the Firecomms FDL-300I FOT transceiver [42] was found to provide a good compromise
between foot-print size and communication speed (250 MBit/s).

Parallel to data transmission, all detectors have to be supplied with a reference time signal.
The required time resolution of few ten picoseconds can not be provided by any kind of data
transported on the optical fibers within the DAQ network. Hence, a dedicated signal, based
on the differential PECL or LVDS signaling standards has to be distributed to all subsystems.

For the HADES DAQ system, individual front-end electronics had to be developed for
each subsystem depending on their respective requirements. Nevertheless, the whole read-
out system is based on the same electronic building blocks. As described in section 1.1.3,
all boards employ one of a small set of different FPGA types and feature one of two optical
transceiver types for data communication. The FPGA designs are stored in a Flash memory
that can be reprogrammed via the DAQ network so that it can be upgraded without physical
access to the board. The network relies on the FPGAs being identifiable in the network.
This information can not be hard-coded or provided by discrete switches on the boards due
to the high number of individual platforms. Thus, a dedicated chip (Dallas DS1820 1-wire
temperature sensor [43]) is placed on each board that provides a unique ID to the FPGAs.

These similarities of all boards make it possible to reuse the same VHDL code basis on all
FPGA which greatly reduces development time and also facilitates debugging of the complete
DAQ system. The boards shown below have been developed in a cooperation of several
institutes, in particular at GSI in Darmstadt, TU Munich and the University of Krakow.

TOF, RPC, Forward Wall

The complete time-of-flight wall and the forward hodoscope are read out by the Trigger
and Read-out Board (TRBv2 [44], see figure 2.8). The front-end electronics are formed by
detector specific boards such as the TOF-AddOn which contains charge-to-width converters,
amplifiers and signal shapers. The TRB is equipped with a Xilinx Virtex4-FX40 FPGA [45]
that controls a 2 GBit/s optical link. A Texas Instruments TLK-2501 chip [46] generates
the serial data stream since the FPGA does not contain Serdes elements. The front-ends are
connected to 128 TDC channels provided by 4 HPTDC [47] chips. These provide a binning
of 100 ps (40 ps resolution) in standard mode and 25 ps binning in a high-precision mode
with 8 channels.

The TRBv2 was designed as a multi-purpose read-out platform and is also able to operate
in a stand-alone mode. An Etrax FS embedded Linux system [48] acts as an interface between
the FPGA and an Ethernet connection. It can configure all devices on the TRB and act as
read-out and slow-control interface if desired. Additionally, a TigerSHARC DSP is forseen
to provide data processing features but is not used in the HADES setup.

On its backside the TRB provides an AddOn connector that allows to connect additional
electronics that provide specific features. For example, the TOF-AddOn makes uses of this
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Figure 2.8.: The Trigger and Read-out Board (TRBv2) is used to read-out the TOF, RPC and
forward wall detectors. It features a Xilinx Virtex4-FX40 FPGA, an optical link
controlled by a TLK-2501 chip, 128 TDC channels with 100 ps binning pro-
vided by 4 HPTDC chips, a TigerSharc DSP and an Etrax FS embedded Linux
processor.

connector for power supply and threshold settings. Other boards like the Hub or Shower-
AddOn are also able to perform high-speed communication between the FPGAs on both
boards.

RICH

The RICH read-out system consists of the front-end electronics equipped with pre-amplifier
circuits. These front-ends are connected to the ADC module (ADCM) that features a Lattice
ECP2M-100 FPGA [49] and a SFP transceiver module. A 16 channel, 12 Bit, 40 MSPS
ADC [50] digitizes the data from a total of 1024 front-end channels. A microcontroller
supervises the power supply and controls the start-up procedure. In total, 450 front-end cards
and 30 ADCM are built into the RICH read-out system.

MDC

The front-end of the MDC system is composed of the Optical Endpoint (OEP) which is con-
nected to a motherboard (MBO) equipped with TDC chips [18] and daughterboards (DBO)
housing a pre-amplifier, shaper and discriminator circuit [21]. The OEP is mounted on top
of the MBO on the edge of the detector chambers. This gives very strict space constraints of
4 cm times 5 cm for each OEP.

23



Chapter 2. The High Acceptance Di-Electron Spectrometer (HADES)

Figure 2.9.: The Optical Endpoint Board (OEP. left: top view, right: bottom view) is used to
control the read-out of the MDC system. These boards are connected to the front-
end electronics equipped with TDC chips. The OEP itself contains a Lattice
ECP2/M-20 FPGA, an 250 MBit/s FOT transceiver, voltage regulators, level
converters, two Flash ROMs and an ADC. The size of the board is 4 cm times
5 cm.

It contains a Lattice ECP2/M-20 FPGA and a fiber optical transceiver (FOT, 250 MBit/s).
Voltage regulators generate and stabilize four of the six voltages needed for the front-end
electronics. All voltages can be monitored by an on-board ADC. Two Flash ROMs provide
two different configuration of the FPGA. One acts as a fall-back solution in case of a failure
of the second design which can be altered remotely. The interconnectivity to the MBO is
given by level converters that adapt the FPGA outputs to the 5 V signal levels used on the
MBO.

The full MDC system contains 372 OEPs shown in figure 2.9, controlling 64 or 96 read-
out channels each, depending on the type of motherboard. The complete front-end read-out
logic is described in chapter 6.2.

pre-Shower

The pre-Shower detector is read-out by the Shower-AddOn board. It is designed as an AddOn
to the TRBv2 but is used in a stand-alone mode in the HADES setup. Only the power supply
is shared with the TRB.

The board is equipped with three Lattice ECP2/M-50 FPGA. Two of these FPGA are
connected to a total of 12 8-channel, 60 MSPS, 10 bit ADCs. The inputs are connected to the
front-end electronics that contains signal amplifiers and a multiplexer. In total, each sector
has 2826 channels organized in a 32 x 32 matrix read out by one board.

The third FPGA on the board merges the data from both read-out FPGAs and connects to
two optical links. One provides the usual 2 GBit/s link of the DAQ network, the other is used
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Figure 2.10.: The Shower-AddOn contains three Lattice ECP2/M-50 FPGA. Two read-out a
total of 96 10-Bit ADC channels, the third act as a data merger. Two optical
links provide connections with both the DAQ network and Gigabit Ethernet.
The board is designed as AddOn to the TRB but can also be operated stand-
alone.

to transport data to the server farm using a Gigabit Ethernet link.

CTS

The Central Trigger System is implemented on a dedicated board. A fast LatticeSCM-40
FPGA [51] generates the trigger signals. The connectivity for signals generated by the de-
tector front-ends is given by 84 general purpose LVDS I/O and 30 PECL outputs used to
distribute the reference time signal. Many additional monitoring features for the inputs are
implemented in this FPGA, the full functionality is described in section 4.3.

A second FPGA, Lattice ECP2/M-100 controls the LVL1 trigger and read-out sequence
over the optical network. In total four SFP connectors are available on the board. The CTS
board is an AddOn to the TRB but can also be operated in a stand-alone mode.

Hub Boards

The Hub board (figure 2.12) has been developed as interconnection between all front-end
boards. It is equipped with two Lattice ECP2M-100 FPGA and 20 SFP links. The first
FPGA is connected to 16 SFP and serves as the main network hub. A parallel bus is used to
connect it to the second FPGA where special features are included. It provides the uplink to
the central trigger system and slow-control devices, as well as a Gigabit Ethernet connection
to send data.
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Figure 2.11.: The Central Trigger System (CTS) is based on a two-FPGA board. A fast
LatticeSC/M-40 FPGA generates trigger signals based on various inputs from
the detectors. A LatticeECP2/M-100 FPGA controls the LVL1 trigger and read-
out process. Four optical links provide the interconnectivitiy with the DAQ
network.

Figure 2.12.: The Network Hubs are used as interconnection between all other electronics.
The Hubv2 (left picture) features 20 optical links with 2 GBit/s each while
the MDC-Hubv2 (right picture) is equipped with 32 FOT-transceivers and 2
2 GBit/s optical links. On both boards, Lattice ECP2M-100 FPGA are used; 2
on the Hub, 5 on the MDC-Hub. Both boards are capable of transporting data
via Gigabit Ethernet to the server farm.
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Figure 2.13.: A simplified view of the full data acquisition system. Detector signals are dig-
itized in front-end modules. A DAQ network connects all front-ends to data
storage, monitoring and the central trigger system.

The MDC-OEP is equipped with a different type of transceiver to fit the MDC OEP board.
Hence, a special hub board is needed. Four Lattice ECP2/M-100 FPGA are serving 32
250 MBit/s FOT transceivers. Between those a fifth FPGA provides the connection to the
2 Gbit/s DAQ network and Gigabit Ethernet. The on-board interconnect is built by a mesh of
serial data links. One of these hubs serves two MDC chambers as read-out interface.

2.2.3. The Complete DAQ System

The data acqusition system consists of several individual parts: The detectors are equipped
with front-end modules that digitize the signals produced in the detectors. The second part
of the system consists of the data storage servers and all control and monitoring systems.
All sub-systems are connected using a dedicated data acqusition network. The trigger and
read-out process for the full system is controlled by the central trigger system.

The complete DAQ network setup consisting of all boards shown in section 2.2.2 is shown
in figure 2.14. The two types of network hubs provide the interconnect between all subsys-
tems. The network is organized in a tree-like structure, with one central network hub that
connects the Central Trigger System and the slow control interface to other systems.

From the central hub, the network is separated into its subsystems which are again con-
nected using additional hubs. This separation gives the possibility to run each subsystem
individually during test periods. Additionally, data from all subsystems is not merged and
can easily be disentangled during data analysis. All front-end boards are connected to the
CTS using three intermediate Hub boards at most to keep the latency for data transmission
as short as possible.

The backbone of the DAQ system is formed by a set of servers (“Event Builders”) which
collect data from all subsystems, combine it into one data block and write it to the data
storage. First, data is stored on local hard drives and subsequently transported to tape or disk
storage in the GSI computing center.

The data transport to the server farm and slow control from the control room is handled
via Gigabit Ethernet links and a standard infrastructure (see figure 2.15). The DAQ network
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Figure 2.14.: A schematic view of the HADES DAQ network setup. Network hubs are shown
in purple, all read-out boards in green. Additional front-end electronics are
shown in gray. The small numbers indicate the amount of boards of each type
in the DAQ system.
All boards use a common network protocol for data transport within the DAQ
system. The interconnect to the server farm and control room is built by stan-
dard Gigabit Ethernet links. Parallel to the data network, differential signals are
used to generate (dark purple arrows) and distribute trigger signals (not shown).

Figure 2.15.: The second part of the data acquisition system is formed by a Gigabit Ethernet
Network. Data is sent by the DAQ electronics via 25 Gigabit Ethernet links
to Ethernet switches which forward the data to the server farm and to perma-
nent storage. All slow-control and monitoring facilities are connected to this
network as well.
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sends data using 25 optical GbE links to network switches that convert the data to copper-
based media. A central 10-GbE network switch connects all systems to the server farm and
the computing center.

In parallel to the data network, a set of signals retrieved from the front-end modules of
the timing relevant detectors are being transported to the CTS and are used to generate the
trigger signal. Here, the reference time signal is generated and transported to all subsystems
using a dedicated network of differential signals.
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3. DAQ Network Structure

This section describes the logical structure of the TrbNet protcol. In the first section, a general
overview of the network features is given and the data format used to transport data is shown.

The logical blocks implementing the network features are described in further detail in
section 3.2 followed by a description of some special features, which are implemented within
the protocol stack, in section 3.3. In the last part of this chapter, the operation of the two types
of network nodes, namely endpoints and hubs, are explained.

3.1. Data Format and Network Channels

All data transported over the HADES DAQ network is organized in so-called packets. These
packets are the smallest units of any data transfer. Each packet has a fixed size of 80 Bit
including a 16 Bit header that defines the content and context of the packet and 64 Bit of pay-
load. Internally, all data are handled in 16 Bit wide words16, allowing for a simple adaption
to any word size of higher level data like 32 or 64 Bit. Hence, a packet consists of one header
word (H0) and four data words (F0 – F3).

The data format foresees five different packet types which are identified by the packet
header H0. The contents of the related data words are shown in table 3.1.

DAT This packet type is used to transport any kind of data within its 64 Bit payload.

HDR The header packet initiates a transfer and contains the network addresses of both source
and receiver of the transfer. Besides, it contains a sequence number that can be used
to keep track of all transfers being made. A 4-Bit data type field is used to specify
the contents of the transfer. As an optional feature, the length of the transfer can be
included.

TRM The termination packet marks the end of a transfer on the network and contains ba-
sic status and error information as well as a checksum. The packet also contains the
sequence number and data type which are sent within the header packet.

EOB The end-of-block packet is used to separate transfers into smaller blocks of data, typi-
cally 1 kbyte, which have to be acknowledged by the receiver.

16At 16 Bit word width, a clock speed of 100 MHz is sufficient to match the speed of the fastest optical links
used.
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Name ID F0 F1 F2 F3

DAT 0x0 64 Bit data payload
HDR 0x1 source target length seq.no. & type
EOB 0x2 CRC1 reserved word count buffer number

TRM (request) 0x3 CRC1 payload seq.no. & type
TRM (reply) 0x3 CRC1 error & status information seq.no. & type

ACK 0x5 resv. buffer size reserved buffer number

Table 3.1.: Network Packet Types. The ID is encoded in the H0 header word. The TrbNet
protocol defines a set of 5 different types of network packets. For each, the corre-
sponding payload is given in columns F0 to F3.
(1) in case the CRC is not used, this word is available for additional payload /
status information

ACK The acknowledge packet is sent by the receiver of a data stream to inform the sender
that data has been received correctly.

According to the different tasks the network has to fulfill, it is divided into 3 virtual net-
work channels which carry the LVL1 triggers, read-out and slow-control data. The transport
of LVL1 triggers has to be guaranteed to be carried with the shortest possible latency not
influenced by data transfer on other channels. The next-highest priority is assigned to the
read-out channel while the slow-control has the lowest priority. Unlike in other network pro-
tocols, the virtual channels are separated inside each network node and do not share buffers
(compare figure 3.1).

A switch between network channels is possible after each full packet has been transmitted.
Due to the very low granularity the delay introduced in the transport of high-priority packets
is always less than 50 ns on fast optical links.

3.2. Network Layers

Typically, the structure of a data transport protocol is described in a model of different lay-
ers [52], each providing specific features and coping with a specific part of data transmission.

The TrbNet protocol stack consists of six layers as shown in figure 3.1. Each layer adds
another feature or information to the data stream as shown in figure 3.2. The lowest level is
formed by the media connecting two network nodes, the physical layer. Data is separated by
the multiplexer which is followed by the transport layer securing data transfer and checking
data for their integrity. Network addresses and message filtering is implemented in the trans-
action layer while the connectivity to the users logic is provided by the application interfaces.
These features are described in detail in the following sections.
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Figure 3.1.: The TrbNet protocol stack consists of six layers, the lowermost is composed of
the physical layer (media interface), followed by the I/O buffers (transport layer),
the API (transaction layer) and the application layer. The three logical network
channels are handled separately inside each network node.

Figure 3.2.: Each network layer adds an additional feature to the data transported. The ap-
plication interface prepares the data offered by the “User”, the transaction layer
adds a header and termination word. The link layer organizes data in blocks with
checksums and handshake signals (purple). The multiplexer merges data from
different network channels (gray) and the media interface converts data into a
format the physical link can handle.

One remarkable feature of the TrbNet protocol stack is that it separates all data into three
logical channels directly above the physical layer. Each channel serves one of the different
functions joined in the network protocol. Nonetheless, all channels incorporate the same
logical blocks and differ in their respective application interfaces only. The different channels
are further described in section 3.1.

The whole protocol stack is available as one building block and referred to as the endpoint.
The physical layer is not included within this block since it has to be chosen depending on
the exact hardware configuration of each module and can not be totally unified throughout
the system.
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3.2.1. Physical Layer: Media Interfaces

The media interfaces provide the low-level connection between different network nodes. In
the Hades data acquisition system, most links are based on serial data transmission. On-
board connections make use of electrical signals while all off-board links use optical data
transmission. Due to different FPGA types (Lattice SC/M, Lattice ECP2/M, Xilinx Virtex-4)
various interfaces are available. Additionally, the inter-FPGA connection on the Hub2 board
is based on a parallel 20 bit bus running at 100 MHz.

Independent from the hardware, all media interfaces share a common set of features. First,
appropriate hardware blocks need to be implemented to transport data into and out of the
FPGA. For serial links, the Serdes hard-cores of the Lattice FPGAs are employed. On Virtex-
based boards, an external chip generates the serial data stream and is interfaced to the FPGA
using a parallel bus. Here, basic I/O-Flipflops are sufficient to transport data.

All links transport data combined with a clock signal (synchronous transport) so that the
receiver has to convert the incoming data stream from the external clock signal to the internal
system clock of the FPGA before it can be handled further. In some cases, such a transfer is
also necessary on the transmitter side.

Each interface features a set of control words or signals that facilitate link operation. On
serial links the 8b/10b encoding provides a set of ten control characters that can be used.
On the parallel interface an additional signal is used to distinguish between data and control
words.

The start-up of a link is controlled by a fixed sequence to ensure a synchronous operation
of the transceivers on both ends. Depending on the link type, a special control word is used to
signal the receiver the availability to transmit data. Now, a initialization sequence is started
with a fixed timing. After a given time, receiving of data is enabled; after another delay also
the transmitter is fully activated. If the link fails or invalid words are received, the sequence
is restarted. Figure 3.3 shows the start-up sequence used on all serial links; the parallel data
interface uses a similar but simpler scheme since no clock recovery and synchronization has
to be performed.

The TrbNet data format relies on 80 bit packets, divided into 5×16bit words. The internal
logic of the endpoint requires the 16 bit words to be tagged according to their position in
the packet. This information is not directly transported between the nodes but has to be
regenerated inside the media interface, e.g. by counting the number of received words or by
insertion of special code words to mark the beginning of each packet.

All links are capable of transporting a global reset signal that forces all connected boards
into a defined state. On some optical interfaces an error detection and correction feature is
implemented. This function is further explained in section 3.3.4.
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Figure 3.3.: The activation of each network link is controlled by a link state machine that
starts a defined sequence of steps as soon as a valid signal is received. After a
lock to the data stream is achieved, and a certain time has passed, the receiver is
enabled; after another delay also the transmitter is activated. This state machine
is used on all serial links, the parallel interface uses a similar scheme.

3.2.2. Multiplexer

The low latency and non-blocking behavior between different channels can only be guar-
anteed if data from all three channels are handled separately inside the network nodes. On
the receive path, a de-multiplexer forwards the incoming data to the different IO-Buffers,
depending on the channel number provided in the first word (H0) of each network packet.

In the transmit path a priority arbiter selects which channel is allowed to send data based
on the availability of data and its priority. New decisions are taken after each network packet
so that the worst case latency for a high priority packet is five data words. Depending on the
endpoint logic, there might be additional clock cycles delay in case a packet is not sent in
one block but has intermediate pauses caused by higher level logic.

The transmit path can be configured with additional buffers to overcome this problem by
first collecting the full network packet and forwarding it to the multiplexer only when it is
complete. This introduces a fixed latency to the data transmission but is necessary for correct
operation of network hubs. Here, a special sequence of input packets could produce a dead-
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lock between two channels if packets were forwarded without buffering.

3.2.3. Link Layer: IO-Buffer

The IO-Buffer controls the data transfer between two adjacent network nodes. It consists of
a local output buffer connected to a remote input buffer and vice versa. The two duties of the
link layer are the prevention of data losses due to buffer over-flows and to provide a check
for data integrity.

Whenever data is sent over the network, it has to be assured that the receiver is able to
handle the data. It might always happen that data can not be forwarded due to various reasons.
For example, the interfaces to Gigabit Ethernet or to a PC on the slow-control channel have
a smaller bandwidth than most parts of TrbNet. This can lead to delays in data transport.
Another major cause is the data merging done inside network hubs. Only data from one
front-end link can be transported at a given point in time while all others have to be stalled.

Hence, all receivers contain a data buffer of defined size (usually two times 102 network
packets, i.e. the buffer size is 2x102 packets which is 1020 words). All data transferred
is divided into blocks, each not bigger than the buffer in the receiver. The receiver has to
acknowledge the receipt of each block of data as soon as the input buffer is cleared and ready
to accept the next block of data.

This handshake is implemented in the link layer as shown in figure 3.4. The output buffer
adds a EOB packet to the end of each block of data. The EOB including a running number and
the number of words of the current block. As soon as this word is read from the buffer in the
receiver, a ACK packet is sent back that allows the transmitter to send the next block of data.
The receiver is able to store two full blocks of data to eliminate the waiting time between
sending a block of data and receiving the acknowledge.

Additionally, each EOB and TRM contains a 16 Bit CRC check-sum calculated from the full
payload of the data block. This check-sum is validated by the receiver and, if a mismatch
is found, a error bit in the termination packet ending the transfer is set. A retransmission of
data is not foreseen on this level due to complexity reasons.

3.2.4. Transaction Layer: API

The transaction layer provides the application interface (API) to the network. In particular,
it accepts raw data from the application side and also strips received data from all overhead
added for the network protocol. As a consequence, the application is provided with the words
F0 through F3 from each packet only.

The header packet is checked if the transfer is addressed to this particular end-point. If
not, it is automatically answered with a short transfer (see section 3.3.2). If data has to be
processed by the application, all data payload is forwarded. Afterward, the API waits for
reply data that is sent back to the requester. These data is automatically equipped with a

35



Chapter 3. DAQ Network Structure

Figure 3.4.: The IO-Buffer perform a handshake to guarantee that the receiver is able to ac-
cept data. From top left, clock-wise: The output buffer of the sender divides
data into blocks and at a EOB packet with a checksum. The receiver input buffer
temporarily stores data in a buffer and detects the EOB. A ACK packet is sent back
to the sender which may send the next block of data.

header and termination packet and all data is packed into DAT network packets.

3.2.5. User Interface: Trigger, Data and Slow-Control

The uppermost layer of the TrbNet structure is formed by the user interface. This interface
provides all connections needed for the front-end logic to communicate through the data
acquisition network with the highest abstraction possible. That means, the interfaces are kept
as simple as possible to ease connecting any front-end logic to the network endpoint.

Due to the different purposes on each of the network channels, there are three independent
blocks for each of the channels. First, the LVL1 Trigger Handler provides the interface on
which trigger signals are received, checked and provided to the front-end logic. The front-
end can give back a busy release signal along with basic status information. This block is
described in detail in section 4.4.

The read-out is fully controlled by the Data and Read-out Handlers. The front-end fills
its data into a configurable buffer and does not have to implement any read-out control fea-
tures. The data interface and the read-out process are fully described in sections 5.2 and 5.4,
respectively.

All slow-control, configuration and monitoring features are handled by the RegIO com-
ponent. It provides a set of standardized features such as network address handling and a
common set of registers. All front-end dependent functionality can be added to the general
purpose data bus provided by the entity. These features are described in chapter 7.
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Figure 3.5.: The application interface (API) receives data from the network, checks the net-
work address and forwards all received data to the user interface. The user inter-
face provides the data to be sent back to the network. After data transfer in both
directions is finished, a termination packet is added and the cycle is finished.

3.3. Special Features and Definitions

The TrbNet includes a set of special features which are dedicated for the use in a data ac-
quisition network which are described in this section. Network addresses are assigned based
on unique board identifiers as described in section 3.3.1. All data transfer on the network
is organized in transactions, consisting of a request and a reply all boards are forced to sent
(see section 3.3.2). On the low-level media interface, an error detection and configuration
mechanism is implemented (section 3.3.4).

3.3.1. Network Addresses

Within the network, all network nodes are individually addressable by a 16 bit address. These
addresses are used to send control messages and requests to single boards and to mark the
source of status information. They are also used to identify the data source during read-out
in form of sub-event and sub-sub-event IDs (see section 5.1).

During the start-up process of the network, these addresses are assigned to all boards based
on unique hardware IDs. For this reason, every network node is equipped with a DS1820 1-
wire temperature sensor [43]. These devices contain a 64 Bit unique identifier that is used to
identify individual hardware components in the network. This number is automatically read-
out during power-up and made available to the slow-control system. The start-up software
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contains a table with all hardware ids and assigns the corresponding network addresses by
sending the id/address combinations as a broadcast to all boards. After this procedure, all
network nodes are individually accessible for any kind of transfers.

The actual addresses are chosen to represent both the physical structure of the detector
and the different sub-systems. Hence, all addresses can easily be decoded without requiring
excessive look-up tables. All addresses are listed in table A.2.

Besides the individual addresses, the network protocol also features a set of broadcast ad-
dresses. Addresses in the range 0xFF00 – 0xFFFF are broadcast addresses for all boards
or for boards belonging to a specific sub-system. In this block, nine different broadcast
addresses are available by applying a hard-coded bit-mask to the lower eight bits of the net-
work address. 256 further broadcast addresses for specific FPGA types are available within
the 0xFE00 – 0xFEFF range. The full list of assigned network broadcast addresses is given
in table A.1.

3.3.2. Transfer Types and Network Transactions

A full network transaction consists of two transfers: First, a request is sent to the network.
The hubs distribute this request to all network nodes since no routing is being done. Second,
all nodes receiving a request have to sent a reply. This reply is routed toward the node that
issued the request.

In either case, only if a node is addressed by the request the user logic is allowed to sent
back a reply of either transfer type. If a node is not addressed, the API automatically sends
back a short transfer to acknowledge the receipt of the request. Before all nodes have sent
their termination packet, no other request may be done.

The fixed two-step process for each transaction gives several advantages: First, it directly
resembles a busy logic for trigger distribution if the front-ends delay their answer until they
are finished processing a trigger. The requirement that all nodes must answer also gives the
possibility to identify if all boards are working properly. On the slow-control channel where
the number of replies varies depending on the address it gives the hub a way to determine
how long it has to wait for additional data.

If a erroneous node is connected to the network, it may fail to send a reply. As a result,
the transaction could not be completed and the network would be blocked. To prevent the
network from being locked, the network hubs contain a time-out limit. If the reply has
not been received within this time limit, the network link is deemed to be broken and the
transaction is forcefully finished.

The network protocol foresees two types of network transfers: full and short transfers.
A full transfer consists of a header and termination packet and an arbitrary number of data
packets in between.

In case only a small amount of data has to be sent as a request, a short transfer can be
issued. Here, only a termination packet is sent. Due to the lack of a network address within
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Figure 3.6.: (a) A dead-lock might happen if two requests are sent at the same time by dif-
ferent nodes. (b) If one direction of request sending between hubs is blocked,
no collision can happen. (c) The condition can not happen if both requesters are
connected to the same hub.

this packet, a short transfer is always a broadcast to all nodes. This transfer type is sent by
the CTS as LVL1 trigger and read-out request.

While a long transfer has no inherent limit on the amount of data transported, a short trans-
fer is limited to the payload available within a termination packet. Here, 36 Bit of payload
can be included; on network channels with a disabled check-sum feature, the allocated space
can also be filled with information so that a total of 52 Bit of payload can be transported17.
The short-transfer can also be send as a reply. In that case, no data but only error information
can be transported.

Transaction Collisions

On the other hand, the fixed two-step transaction process also has one drawback: It is not
possible to have an arbitrary number of request-senders. If two requests are issued by two
different nodes connected to different network hubs at the same time, there will be a dead-
lock as depicted in figure 3.6: The first hub each request is sent to, accepts the transmission
and transmits it to the other hub in the depicted system. Since this hub is already blocked
by the second request, it has to stall the incoming request. Hence, both transfers block each
other and can not be completed.

There are two possible ways to circumvent this specific problem18. Both base on the fact
that this kind of dead-lock can only happen if one network link is used by both requests in
opposite directions. If we assume that a node that sends requests is not accessible by requests
from a remote node on the same channel19, there are two possible solutions.

17This is the case on the LVL1 trigger channel only. All other channels use check-sums.
18The HADES DAQ setup uses only one request sender per network channel so that this problem does not exist.
19This is true for almost all system setups. Either a node is a addressable front-end or functions as a request
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First, all request senders have to be connected to the same logical network hub. Here, both
senders are connected to the hub using dedicated links and all further transmission paths are
shared between both requests. The hub stalls one request until the other is completed without
errors.

The second solution is that one network link is configured as a one-way connection on this
channel. That means that only one request can reach the complete network while the other
is kept within a smaller sub-network. This configuration matches nicely with typical data
acquisition setups in which a full system is made up by several sub-systems. If a request is
addressed to one sub-system only, it can be issued by the restricted node, or it is issued by
the global node if it is sent to all sub-systems.

Termination Packet

The termination packet is handled differently on the request and reply paths: On the request
path, the packet is transported unaltered by all intermediate network nodes (Network Hubs,
see section 3.4.2). In the reply path all network nodes are required to sent at least a termina-
tion packet back. Since the full DAQ system consists of about 550 individual network nodes,
this results in a substantial amount of data. On the other hand, all termination packets sent
by not addressed nodes do not contain viable information besides the acknowledge that the
request has been received. Hence, all received termination packets are merged in the net-
work hubs to one common packet. A common-or logic is applied to the 36 Bit payload of all
packets to obtain the final termination packet forwarded to the requester.

One important implication is that the termination word can not be used to transport arbi-
trary data in the reply path. Moreover, if a single node sets a given bit in the termination
packet, it will remain set in the final packet. This results in the requirement that these bits
are used to transport warning messages and error information only and should remain unset
in most cases. A further explanation of these messages is given in section 3.3.3.

Time-outs

During network operation, it might always happen that a single network node fails and does
not send a reply. Since the hub is waiting for replies from all connected front-ends before
finishing a transaction, this will lead to a blocked network were no further accesses are pos-
sible. Hence, the hubs contain an intrinsic time-out will waiting for a reply. If no data are
received within a given time, the transaction is automaically ended by sending the termina-
tion packet. The time-out delay can be adjusted for each channel and each hub seperately
via slow-control. Additionally, the time-out can be fine-adjusted in steps of milliseconds to
compensate for latency introduced by network topology.

sender, e.g. as CTS or as slow-control access point.
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3.3.3. Error- and Status Bitpattern

The termination packet on the reply channel contains a 32 Bit word with status and error
information. This word is generated by all front-ends but merged into a single word by the
network hubs (see section 3.3.2). Hence, this data word can not be used to transport usual
data but each bit within the word has a specific meaning if it is set. Moreover, the default
value of a bit has to be cleared since if one bit is set by one front-end, it will also be set in the
final word.

The word is divided into two parts. The lower half contains error information generated
by the network that occur within the end-points or during data transport. The upper half
is reserved for channel specific error information and described in the appropriate chapters
(sections 4.6, 5.8 and 7.1).

The least significant bit plays a special role. For a given network request, all boards are
allowed to answer the request by sending a short-transfer. This reply can by itself not be
distinguished from a situation were the addressed board did not exist in the network and no
node accepted the request. Therefore, the bit is assigned by all network nodes that were
addressed by the request. If a reply returns with this bis unset, it is evident that the address
given does not exist.

The further bits are assigned according to the following list. The bits not listed are reserved
and not defined in the current implementation.

Bit 2: Word Missing The EOB packets contain a count of packets that have been sent in
advance. If this number of packets does not match the received data, the bit is set by
the input buffers.

Bit 3: Check-sum Mismatch On each point-to-point link, a check-sum is generated by the
output buffer and validated by the input buffers. If a mismatch is found, it is reported
in the error information.

Bit 4: Don’t Understand Not all nodes support all kinds of requests, e.g. not all possible
data types encoded in the header are implemented. In this case, the application can
answer a request with a short transfer including this error bit.

Bit 5: Buffer Mismatch The handshake between IO-Buffers contains a running number for
both EOB and ACK packets. If these numbers do not match, some packet must have
been lost.

Bit 6: Answer Missing The network hubs contain a time-out while waiting for a reply. If
the reply is not received within the time limit, the transaction is finished and this error
bit is set.
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3.3.4. FOT Link Error Correction

The HADES DAQ system consists of about 500 bi-directional optical links, 372 belong to
the MDC read-out system and are formed by plastic optical fibers. During tests of the whole
DAQ system, these links were found to be operating stably without transmission errors. The
total Bit error rate (BERR) of the system was found to be below 10−16, corresponding to less
than one transmission error per day.

The first commissioning run revealed that the high voltage systems of the detectors had a
severe influence on the optical receivers in the MDC system. Here, the increased electromag-
netic noise environment caused bit errors in the received data stream which caused the data
acquisition to fail. Depending on the high-voltage settings, the error rate was up to 10−12,
i.e. one error every five seconds.

These errors were seen on the 250 MBit/s FOT transceivers but not on the 2 GBit/s SFP
transceivers used in all systems apart MDC. Hence, it was decided to implement a error
detection and correction protocol into the FOT optical link media interfaces. This protocol
was not implemented for the 2 GBit/s links for two reasons: First, no transmission errors was
detected throughout the full commissioning phase and second, the limited set of functions of
the TLK2501 transceiver [46] used on TRB boards did not allow for an extensive low-level
protocol based on control characters.

The full error handling sequence consists of error detection, retransmission request and
retransmission. The error detection is based on three sources: First, the 8b10b encoding
scheme all serial links use assigns only less than half of the available codes to valid characters
so that single bit errors in the data stream are likely to change a valid character into an invalid
one and can be detected. In other cases a single bit error changes a valid data word into
another valid character. Hence, a checksum is added at the end of each TrbNet packet that is
used to verify the validity of the packet. Lastly, all TrbNet data transfers are based on fixed
sized packets. Thus, if data with an invalid number of words is received, this is likely to be
caused by a transmission error. If one of these checks fails, the receiver is able to identify an
error in the data stream.

As soon as the error is detected, all data starting with the erroneous packet are being dis-
carded. The near transmitter sents a retransmission request containing the current buffer
position. The far receiver gets the request and configures the transmitter to sent a retrans-
mission. Here, the read position in the ring buffer is adjusted according to the request. A
start character is inserted, repeating the buffer position followed by all data words that are
available in the buffer. As soon as the receiver gets the start character, data checking and
forwarding is re-enabled. If the start character is not received within a reasonable time, the
retransmission request is deemed to be lost and repeated.
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Name Character Value Payload

Idle K28.5 0xBC 0x50 or 0xC5 according to the GbE standard
Reset K30.7 0xFE None
CRC K29.7 0xFD CRC value
Start K27.7 0xFB Position in ring buffer where transmission starts
Error K23.7 0xF7 Position of receive counter where corrupted data occured.

Table 3.2.: The control character definitions used on optical links. Both the character name
and the 8 Bit representation as well as a description of the 8 Bit payload following
the character is given.

Figure 3.7.: The error detection and correction logic implemented in the FOT media interface

The Implementation

The 8b10b code forsees 10 special control characters that can be used to transport additional
information besides normal data. From this set of characters, three have been chosen to
transport all information to detect transmission errors and to request a retransmission of data
if data was corrupted. These characters are described in table 3.2.

The complete error handling logic is divided into two parts: One is located in the trans-
mitter, one is placed in the receiver. A schematic view showing the most relevant functional
blocks is given in figure 3.7.

In the transmitter, data is first converted from the FPGA internal bus (16 Bit, 100 MHz) to
the data rate used for the optical links (8 Bit, 25 MHz). This data is fed to a ring buffer with
a depth of 256 words. Here, data is stored for few clock cycles until it can be read by the TX
controller and be sent on the medium. Additionally, all data is available in the ring buffer until
they are overwritten at least 256 clock cycles or 10.24 µs later20. If a retransmission request
is received, the read position in the ring buffer can be adjusted according to the request and
all data beyond this point is resent.

20Precisely, data is stored until 256 additional data words have been sent. If the link is not entirely occupied by
data, this time may be much longer.

43



Chapter 3. DAQ Network Structure

Figure 3.8.: The error detection and correction state machine is part of the receiver block.

The buffer time is also the maximum affordable latency of a valid retransmission request.
The round-trip time for a packet is less than 1 µs due to lantencies in both transmitter and
receiver blocks plus the transit time of the optical signal which is about 5 ns/m. Hence, in all
setup scenarios the selected storage size is sufficient.

The transmission controller generates the data stream to be sent on the network. It reads
data from the buffer and inserts the defined control characters to the data stream:

Idle K28.5 The idle character is added whenever no other kind of data or control charac-
ter is waiting for transmission. The data payload consists of the 0x50 data character
according to the Gigabit Ethernet standard21.

CRC K29.7 At the end of each network packet, a 8 bit checksum is added. It is marked by
the CRC comma character and followed by the checksum value.

Reset K30.7 The reset character is sent to force a complete reset of the connected endpoint.
It is always sent in a block of several dozen words, the reset takes place when the
sequence finishes.

Start K27.7 The start character marks the beginning of transmission after a connection has
been established or after a retransmission request has been received. The 8 bit payload
contains the current position in the buffer for transmitting data.

21The GbE standard also requires the running disparity to be negative whenever an idle character is being sent.
This is not implemented.
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Error K23.7 The error character is used to inform the far transmitter about an error in the
received data streams. The payload contains the position in the transmit buffer at which
the retransmission has to be started, i.e. all data up to this point has been received
correctly.

Data If no transport messages are to be sent and there is data available in the buffer, these
words are read and sent.

On the receiver side, the incoming data is stored in a Fifo until the validity check gave a
positive result. A comma detection logic extracts all comma characters from the data stream
and gives the corresponding information to the control logic. In particular, the data is checked
for code violations, undefined control characters and the correct position of checksums. In
parallel, the checksum over all incoming data is calculated and compared to the one received
with the data.

The control logic also monitors the contents of the Fifo if it contains incomplete packets
which can be an indication for data loss. The reaction of the controller if any type of trans-
mission error is detected is depicted in figure 3.8. First, all valid data remaining in the Fifo
is being forwarded to the endpoint, then the buffer is disabled and the retransmission request
is sent. After a Start control character has been received, the controller goes back to normal
operation.

3.4. Network Nodes

All logical parts of the network, so-called network nodes, can be subdivided into two cate-
gories: Endpoints and Hubs.

A network endpoint is any component which is able to send and/or receive data on the
network. It has an unique identifier and a network address that makes it accessible from
other network nodes. In this sense, all front-end and control boards form network endpoints.

A network hub, on the other hand, is a device with several connections to the network
which is used to route data streams between several other network nodes. A typical hub in
the TrbNet network has 4 to 13 ports. Network hubs can also be supplied with additional
components that implement conversion logic from one transport protocol to another. The
most common implementation of such a network bridge is used to receive information on the
TrbNet data channel and transport it to the Eventbuilder server farm using a Gigabit Ethernet
protocol.

The two types of network nodes are not necessarily located on different physical devices.
Some boards, e.g. the Shower AddOn, contain a hub in one FPGA and network endpoints
in two additional FPGA. In some cases, both network node types are also located inside
the same chip. In fact, each network hub also contains a network endpoint for control and
monitoring purposes.
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3.4.1. Endpoints

Figure 3.9.: A network endpoint with LVL1 trigger and data handlers as it is used in the front-
ends. Note that only the upper network layers are shown. Compare figure 3.1.

The TrbNet endpoint for front-ends provides the interface to receive triggers and send
event data over the network to the front-end logic. The interface to the slow control channel
provides the internal data bus and preconfigured status and control registers.

The LVL1 Handler checks the inputs from the reference time signal and relates them to
the LVL1 trigger packets received over TrbNet. The front-end logic is provided with all
necessary information about the trigger. After finishing processing data, the busy release
signal is given to the LVL1 handler.

The event data from the front-end is written to the Data Handler that contains the neces-
sary buffers. The complete read-out process on the data channel is encapsulated in the IPU
Handler and therefore independent from the front-end logic.

These data handling components, together with the RegIO component on the slow control
channel, form the uppermost layer of TrbNet. According to the protocol stack, they connect
to the transaction layer which is contained in the functional endpoint block as well. Likewise,
the link layer is encapsulated.

The logic blocks for the upper protocol layers in the network endpoint are shown in fig-
ure 3.9.

There are several other endpoint configurations available, depending on the purpose in
their implementation:

• A endpoint with three application interfaces only is used to implement the active Trb-
Net control endpoint that sends all requests within test setups.

• A front-end endpoint without Data and IPU Handler is used on the RICH front-ends.
Here, the processing logic for raw data already contains the features so that an addi-
tional buffer stage is not necessary and data is fed to the application interface directly.
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• The central trigger system uses a specialized version of the endpoint. The transac-
tion layer on the LVL1 and slow control interface are equipped with logic for efficient
generation of LVL1 triggers and read-out requests. At the same time, the slow con-
trol channel is implemented similar to front-ends and gives the same monitoring and
control functionalities as in front-end modules.

3.4.2. Network Hubs

In Ethernet applications, a network hub is a device that sends all data it receives on any input
to all outputs without changing them. A TrbNet hub fulfills additional tasks:

• Data from all network channels are handled separately. Like in any network endpoint,
the incoming data stream is de-multiplexed. The data are passed on to three distinct
hub logic blocks.

• Each port of the hub contains the point-to-point handshake logic contained in the IO-
Buffers as described in section 3.2.3.

• The hub logic blocks process and route the data as described below. Responses from
all connected ports are merged into a single data stream forwarded to the sender of the
network request.

• On the IPU data channel headers from front-ends are checked for validity and addi-
tional headers are generated.

• Various statistics containing information about data rates, dead-times and error mes-
sages are generated. These monitoring features are described in section 3.4.2.

• The hub contains control logic to configure all ports individually, e.g. ports can be
switched off on a per-channel basis to exclude parts of the system from data taking or
slow control. These features are described in section 3.4.2.

A schematic view of the different parts of a network hub is given in figure 3.10. Here,
the hub is shown with two ports only. A real network hub can be configured with a flexible
number of ports. The current implementation allows up to 17 ports while the maximum used
in current hardware are 13.

Hub Logic

The central part of the network hub is the hub logic. Here, data streams are routed and
responses are merged before being forwarded. The logic can be divided into two parts which
work in parallel. One part waits for network requests on either input channel and forwards it
to all other connected ports. Once this data stream is started to be sent, no other input on the
request channel is accepted until all responses have been received.
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Figure 3.10.: The TrbNet Hub. Here, a hub with six ports is shown. The actual implemen-
tation of the network hub is freely configurable and usually has four to twelve
ports. Data from different TrbNet channels is handled separately by the corre-
sponding hub logic block. Additional components generate statistics and con-
trol the hub behavior.

Figure 3.11.: The TrbNet Hub Logic. A hub with five ports is shown. On one a request is
sent (upper left) and forwarded to the other four ports. On the reply path, data
from these four links is received and forwarded to the one link that initiated the
transfer.
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Figure 3.12.: The network hubs merge all incoming reply data into one data stream. All data
from incoming streams is forwarded while the termination packets are merged
into one packet using a common-or logic and added to the end of the stream.

The receiving and forwarding of responses is part of the second half of the hub logic. Data
streams from all connected ports, despite the one on which the request has been received, are
forwarded to the requester. The termination packets are not forwarded but automatically read
by a special logic block. The status and error information words are merged and the resulting
termination is sent to the requesting port. The resulting data stream is depicted in figure 3.12.

In a basic hub implementation, all input ports are allowed to be the source of a TrbNet
request without distinctions. This gives the flexibility to connect an arbitrary number of active
network nodes. Nevertheless, most experimental setups have an inherent structure which
implies the existence of dedicated up-links. To save logic resources, the hub implementation
can be configured to resemble this structure and accept requests only on a dedicated port or
set of ports.

Hub Logic on IPU Channel

The IPU channel is operated by a special hub logic block that contains additional features to
handle the event and data headers. Due to the format of the HADES SubEvent, information
about the sender and length of a transfer have to be collected at the beginning of each data
transfer. Thus, a calculation of total length and the generation of these special data header
words has to be implemented. The full description of the logic is given in section 5.5.

Hub Control

Besides the options for hub configuration that are set during synthesis of the code, each hub
contains a set of control registers that are used to configure the hub during run-time.

For example, each port of the hub can be switched off individually to exclude sub-systems
from the network if necessary. Furthermore, the switching can be done separately on each
of the three TrbNet channels. Thus, a sub-system might be excluded from triggering and
data taking while still being accessible over the slow control channel. This feature can be
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Figure 3.13.: The TrbNet IPU Hub Logic. A hub with five ports is shown. On one a request
is sent (upper left) and forwarded to the other four ports. On the reply path, data
from these four links is received and forwarded to the one link that initiated the
transfer. Compared to the generic hub logic, data is also checked for validity
and data headers are regenerated.

used to re-configure one board which experienced an error while the rest of the system keeps
running.

In some cases it happens that one front-end board does not send an answer to a TrbNet
request. Consequently, the hub it is connected to keeps waiting for an answer before it can
finish the transfer and blocks all communication on the slow-control channel. To avoid this
situation, the hubs contain a time-out logic. The maximal time the hub waits for an answer
can be set by slow control. The typical response time until a reply arrives is less than 1 ms
for all slow-control accesses but may be up to 10 ms on the LVL1 channel due to long lasting
calibration measurements.

The time-out duration can be set in several steps in the range from 32 ms up to 8 s. This
value can be set individually for each network channel and each network hub. In a full
network setup with several layers of hubs have to be adapted to routing delays in the network:
If a front-end board fails to answer, only the hub it is connected to is supposed to generate a
time-out. The time-out duration has to be shorter on hubs connected to front-ends and longer
on more central hubs. Consequently, the duration can be fine adjusted in steps of 2 ms.

The full list of configuration registers can be found in section C.2.

Hub Monitoring

The current operational status of the data acquisition can be summarized in three quantities:
The availability of front-ends, the amount of data sent and the busy time. All these are
monitored on-line in the network hubs. The information which hub ports have currently
established connections and the amount of data received on the links is available via slow
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control.
The hub keeps track of the busy time on the LVL1 trigger channel. This time is defined as

the period between sending a trigger information packet towards the front-end and receiving
back the busy release packet. Further information can be gained from comparing the total
busy time and the exclusive busy time. That is the period during which only one of all
connected ports is busy. Thus, it is a measure for if the observed busy time is a global effect
from several sub-systems or if only one front-end causes a significant part of the total dead
time. More status information is available to see if time-outs occurred on a connection or
if the output buffer is currently waiting for an acknowledge of the receiver side. The media
interfaces report about fragmented network packets and necessary retransmission requests.
All this information may point to possible connection problems which may have caused a
DAQ failure.

The merging of data streams also combines the error and status word sent by all front-
ends. The information which front-end sent which message is not conserved. Nonetheless,
the most important parts of error information are stored in the hubs for each port separately
for later analysis.

Last but not least, a board tracking feature can be used to investigate the full data path
from the central hub to any front-end. This mechanism is further described in section D.2.
The total amount of status and monitoring features sums up to more than 100 registers in a
12-port network hub. The full list can be found in section C.2.
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The first important step of acquiring data in any triggered experimental setup is the generation
and distribution of the trigger signal to all sub-systems.

The HADES data acquisition system uses a trigger-busy-release architecture. In particular,
for each recorded event, a trigger signal is generated, supplied with additional information
and distributed to all systems. Then the triggering circuit is stopped until all sub-systems
have acknowledged their capability to take the next event.

Additionally to precise timing, distributing information about the trigger type and handling
of busy times of the front-ends is required. This sequence is described in the following
sections.

4.1. Overview

The full HADES trigger sequence can be divided into five steps based on a normal trigger-
busy-release architecture:

1. Trigger Generation Analog circuits process information from start/veto detectors and the
time-of-flight wall. Discriminators generate digital signals with configurable proper-
ties.

2. Trigger Decision In the Central Trigger System (CTS), all trigger sources are evaluated
and if all criteria are met, a positive trigger decision is made.

3. Reference Time Distribution The CTS generates a reference time signal sent to all front-
ends using a dedicated LVDS line.

4. LVL1 Trigger The CTS sends a trigger information packet to all front-ends via optical
links.

5. LVL1 Busy Release The trigger information packet has to be acknowledged by all front-
ends. Hereby a busy-release information is resembled which allows the CTS to send
another trigger.

This sequence is used for all triggers that are supposed to take data synchronously from
all sub-systems. Opposed to that there are also kinds of triggers which do not rely on precise
timing information and which are not triggered by a physical event. This group consists of
different calibration triggers for individual sub-systems for example.
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Figure 4.1.: The Central Trigger Systems sends a LVL1 trigger packet to all front-ends (upper
part). This packet is answered with a LVL1 busy release packet (lower part) by
all front-ends

Since no timing information is needed in this case, the first three steps of the trigger se-
quence are skipped and only steps four to five are executed.

4.2. LVL1 Trigger

The communication between CTS and front-ends related to the LVL1 trigger is encoded in
two network packets that contain all necessary information as shown in figure 4.1. The LVL1
trigger is sent to all front-ends as a broadcast making use of the short-transfer feature of
TrbNet [40].

The data transported with the LVL1 trigger contains the following information:

Trigger Number Each trigger is marked by a 16 Bit trigger number. This number is used to
identify events during the read-out process.

Trigger Type The HADES Trigger System foresees sixteen different trigger types of which
five are currently in use. Trigger types 0x0 to 0x7 are reserved for physical triggers that
are sent in combination with a correlated reference time, while the rest is reserved for
reference-time-less triggers (RTL-trigger). The complete list of assigned trigger types
is shown in table 4.1.

Trigger Information Additional information about the desired front-end behavior is encoded
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Trigger Description

0x1 Physics Trigger
0x9 MDC Calibration Trigger
0xA Shower Calibration Trigger
0xB Shower Pedestal Trigger
0xE Status Information Trigger

Table 4.1.: LVL1 Trigger Types. In total, 16 trigger types are available. One is used to mark
physical events while the other four are special purpose triggers.

Bit Description

0 Discard Data. If this bit is set, all front-ends will discard their data. The read-out
request for this event will be answered with an empty data packet.

1 – 6 Unassigned
7 RTL Trigger. This bis used to additionally mark any trigger that was not pre-

ceded by a reference time signal.
8 – 10 RICH Processing Type. Selects the type of data pre-processing in RICH front-

ends. See table 4.3
11 – 16 Unassigned

17 TRB TDC. Suppress sending all headers generated by the TDC chips on the
TRB

18 – 23 Unassigned

Table 4.2.: The LVL1 Trigger Information bits are used to configure the front-end behavior
on an event-by-event basis. The complete trigger information is formed by 24 bit
of data.

in 24 bit of trigger information. Here, the CTS can request that data should be pro-
cessed but not stored for read-out. This mode can be used to run detector tests with
automatic data analysis on the front-ends where no data has to be stored for further
processing. For some sub-systems the kind of pre-processing done can be selected as
well on an event-by-event basis [53]. The list of assigned trigger information bits is
shown in table 4.2.

Trigger Code The LVL1 trigger packet is further complemented by a 8 bit random code.
This code is used during the read-out phase to determine if all sub-systems deliver data
that belongs to the right event. Compared to a sequential counter a random value adds
a bigger amount of security since it can not be aligned or misaligned due to a simple
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Value Name Description

0 Raw128 Raw data from all 128 channels
1 Ped128 Pedestal corrected data from all 128 channels
2 Ped128Thr Pedestal corrected and threshold selected data from 128 channels
3 Raw64 Raw data from all 64 physics channels
4 NC64Ped64 Baseline corrected data from physics channels and pedestal cor-

rected data from auxiliary channels
5 NC64 Baseline corrected data from physics channels
6 NC64Good Baseline corrected data from physics channels with under- and

overflows removed
7 NC64Thr Normal Mode: Baseline corrected data from physics channels

with under- and overflows removed and thresholds applied

Table 4.3.: The LVL1 Trigger Information Bits 10 to 8 are selecting the data pre-processing
mode for RICH front-ends [53].

counting error.

The busy release packet consists mainly of a 32 Bit wide field of status and error infor-
mation from the front-ends. These packets are sent by each front-end and merged inside the
network hubs using a common-or logic. That is, the CTS receives a set error flag if at least
one front-end reported the corresponding error. The contents of the field are explained in
section 4.6.

4.3. Trigger Generation and Distribution

The Central Trigger System is the component that has control over the full data acquisition
system. Here, detector signals are evaluated, triggers are generated and the read-out process
is controlled.

The CTS consists of a central FPGA-based board which is supplemented by several analog
boards that provide data from the detector inputs.

The central trigger system provides a total of 36 inputs from the different sub-systems:

• 16 channels are receiving data from each of the channels of the Start and Veto detector.

• 12 channels are connected to signals from each individual sector of both TOF and RPC
detectors.

• 8 channels (“physics triggers”) can be connected to any other trigger source such as
external pulsers or more sophisticated trigger signals.
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The signals from all detectors are first converted to digital pulses by the front-end elec-
tronics and then connected to the trigger logic. The physics triggers are usually preprocessed
by a dedicated electronics component. E.g., analog signals from the front-ends are put to an
analog summing unit. The height of the resulting signal is directly proportional to the amount
of hits that were detected. This signal is fed to a discriminator with configureable thresholds
which generates a trigger signal if the multiplicity was above the threshold.

Currently, three different threshold settings corresponding to three different multiplicity
levels are provided. Additionally, a signal from the forward hodoscope can be selected as
trigger source.

In the central trigger logic, all signals are first put through a signal shaper stage. The
incoming signal is usually of varying length so that it has to be converted into a signal of
defined length. This is provided by a sampling logic running at 800 MHz, corresponding to
a time resolution of 1.25 ns, and an edge detection circuit. The resulting signal can then be
further processed.

Most trigger decisions rely on coincidence measurements between different signals so
that the different length of cables and signal latency has to be taken into account. Individual
delays with a granularity of 1.25 ns can be applied to each channel. The logic has to allow for
the signals to arrive with a changing delay as well. This is accomplished by again changing
the width of each signal to a pulse with a length corresponding to the desired coincidence
window.

In many read-out scenarios, it is interesting to accept different triggers with different se-
lection criteria. Often, one is occuring more seldomly than the other but an equal distribution
is required. Hence, a downscaling logic is implemented that allows to accept only a fraction
of the signals from one channel.

The analysis of experimental data requires precise knowledge about the total numbers of
events, no matter if they led to a positive trigger descision or the hardware was able to read-
out the corresponding data. For this reason, the CTS features a variety of signal counters to
track the amount of pulses on each input and in each of the intermediate processing steps.

Several triggers can be generated internally based on the inputs from all six sectors of
the RPC and TOF detectors. The multiplicity generation is based on the number of sectors
which showed a signal. Additionally, a limitation on non-neighboring or opposite sectors can
be requested.

All multiplicity and physics trigger signals can be gated with a anti-coincidence signal
generated from Start and Veto detectors, i.e. it is required that the Start detector showed a
signal but no signal was seen in the Veto detector.

An internal trigger source can be used to generate triggers without any external signal in-
put. Last but not least, the CTS generates triggers for all special trigger types like calibration
triggers and status events.

The implementation of the trigger logic is fully configurable during run-time. All delays,
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widths and down-scaling factors can be adjusted via slow-control. The inputs and trigger
paths can be enabled and disabled individually as well. The full description of functions
implemented in the CTS can be found in [54].

The total latency from a trigger input signal until the final trigger is sent to all sub-systems
is between 140 ns and 180 ns [55], depending on the selected sources and not accounting for
additional delays added on the inputs.

The reference time signal is formed by a positive pulse of 105 ns length. This pulse is
distributed to all sub-systems using the LVDS or PECL signaling standard. Here, twisted
pair as well as Cat-6e cables are installed. In combination with dedicated fan-out devices to
distribute the signal, this results in a high immunity against electromagnetic noise and a very
low jitter below 40 ps [56]. The distribution of trigger signals is described in further detail in
section B.

At the same time of sending the reference time signal, the LVL1 trigger is prepared and
sent to all front-ends via the optical network.

4.4. Trigger Handler

One of the most crucial points in the trigger system is the correct validation of the reference
time by all front-ends. Therefore, all possible error scenarios have to be checked by each
front-end. The corresponding logic is placed inside the network endpoint and is identical for
all sub-systems.

The reference time signal is directly forwarded to the front-end electronics to keep the
precise timing information. In parallel, the signal is evaluated by the LVL1 Trigger Handler
and checked for correctness. The read-out logic is informed of any possible error on the
signal that might have an influence on the event data.

The general rule of thumb how to handle errors is “Data sent by the CTS is always right,
but there might be errors on the reference time introduced by noise or wrong connections”.
This assumption is valid since the CTS trigger logic has been tested in great depth and the
data transmission on optical links is more immune against noise than a differential signal
transported over ten or more meters on partly unshielded twisted pair cables.

The necessary checks that have to be done by the LVL1 Trigger Handler can be summa-
rized as follows:

• The length of a reference time signal is defined to be at least 100 ns. Therefore, all
signals shorter than 60 ns are to be rejected as noise while longer signals should be
accepted as valid reference time signals

• The reference time signal must not be longer than 200 ns. If this is the case, there are
two possible error sources: The timing signal is not connected due to a mechanical
failure in the connector or the polarity of the signal is inverted. In both cases, this
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status has to be reported to the monitoring system via slow control. If the problem is
an inverted timing input, the signal might be inverted using a configuration register.

• The TrbNet protocol ensures that the trigger information is transported as fast as pos-
sible and arrives at every front-end within 5 µs, typically. If the time between the
reference time signal and the LVL1 Trigger exceeds 20 µs, the timing signal can be
treated as erroneous.

• For each reference time signal there must be a corresponding LVL1 Trigger.

• A RTL-trigger must not be preceded by a reference time signal.

The reaction of the LVL1 Trigger Handler in case one of these rules is not matched has to
respect the typical behavior of the front-end electronics. If there is a too short reference time
signal, for example, the front-end electronics might already be triggered and the read-out
cycle has to be correctly finished by the read-out controller. In any case, the LVL1 Trigger
Handler only checks the inputs from the CTS and informs the read-out logic about possible
errors. The read-out logic has to make sure that the correct, front-end dependent procedures
are carried out.

In total, we can distinguish between two normal trigger cases and six error types as listed
below.

Case 1: Valid Timing Trigger

The normal physics trigger sequence consists of a pulse of at least 100 ns length on
the reference time input, followed by the LVL1 Trigger about 2 to 5 µs later. The
trigger type must be in the range between 0x0 and 0x7 and the trigger information
must indicate a physics trigger.

The LVL1 Trigger Handler accepts the reference time signal if it has a length of at least
60 ns. Typically one clock cycle after this condition has been met, the Trigger Handler
signals a valid physics trigger to the read-out logic.

Case 2: Valid reference-time-less (RTL) trigger

The RTL-trigger consists of a LVL1 Trigger only. This must contain a trigger type
greater than 0x7 and a trigger information indicating a RTL-trigger. Additionally, there
must not be any signal on the reference input before.

If these criteria are met, the Trigger Handler signals a valid RTL-trigger to the read-out
logic about one clock cycle after the LVL1 Trigger arrives.

Case 3: RTL-trigger preceded by a reference time signal

In case of noise on the reference time input, a RTL-trigger might be preceded with
a valid reference time signal. In this case, the LVL1 Trigger Handler has already
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accepted the reference time as valid physics trigger according to case 1 when the RTL-
trigger information arrives. As soon as the RTL-trigger is received, the trigger handler
announces the accepted reference time to be a spurious timing signal and additionally
reports a valid RTL-trigger.

The behavior of the read-out controller depends on the capabilities of the specific front-
end electronics. If possible, the read-out sequence should be interrupted, data collected
so far should be discarded and the requested RTL-trigger should be carried out. Nev-
ertheless, this ideal behavior is not possible for most front-ends since usually the data
is directly stored in the event buffer from where it can not be deleted any more. In
that case, the RTL-trigger must either be skipped (if the read-out controller already
finished writing data) or the RTL-trigger event data might be added to the erroneously
taken normal event data.

In any case, the event is marked as possibly corrupted in the data stream automatically.

Case 4: Timing Trigger without a reference time signal

In some cases, the reference time signal might be lost and not detected by the LVL1
Trigger Handler. Even though the front-end electronics are not triggered in this case,
it might be necessary for the read-out logic to take measures to keep trigger numbers
in sync or to reset the front-end electronics. Thus, the read-out logic is notified of an
invalid trigger when the trigger information arrives.

Case 5: Multiple reference time signals before a LVL1 Trigger

If the LVL1 Handler detects several valid pulses on the reference time input before
a LVL1 Trigger arrives, only the first seen signal results in a valid trigger signal to
the read-out controller. With the first subsequent timing signal, the read-out is only
informed of the multiple signals and the corresponding error information is set auto-
matically.

Case 6: Too short reference time

A short pulse on the reference time input which is not treated as valid (i.e. in case it is
shorter than 60 ns) is announced as a spike to the read-out logic. Opposed to the read-
out logic which uses the filtered trigger valid signal from the LVL1 Trigger Handler,
the front-end might already have triggered and collected data. The correct handling of
this situation is up to the read-out logic.

Case 7: Too long delay after reference time

The network transport protocol ensures that the LVL1 Trigger arrives within a short
time after the reference time signal. Typically, this time is less than 5 µs but might be
slightly longer when there is heavy traffic on the network. If the trigger information
did not arrives within 20 µs after the timing signal, it is likely that it was not a real

59



Chapter 4. The Trigger Sequence

Figure 4.2.: The typical trigger handling algorithm that has to be implemented in the front-
end logic.

signal. Since the read-out already started, the logic is informed about the time-out and
the corresponding error bits are set in both the LVL1 and data channel.

Case 8: Long signal on reference time

The signal on the reference time input might be much longer than a normal trigger.
Usually this happens if either the input is floating without a defined voltage level or the
polarity of the input is inversed. In both cases, the rising edge of the signal is accepted
as a valid timing signal. If the signal stays asserted for more than 1 µs an error flag
is assigned to show this state. The front-end logic has to acknowledge the accepted
trigger in the usual way. The error condition is marked in both the LVL1 and the data
channel error information.

The typical algorithm implemented in the front-end logic to handle triggers is depicted in
figure 4.2.

4.5. Trigger Interface

The interface to the user consists of several individual ports. Three signals are used to inform
the front-end logic about the different types of valid triggers as well as invalid triggers. These
signals trigger the data taking process in the front-end logic.

Additionally, six signals inform the front-end logic about all problems and errors that have
been detected by the Trigger Handler as described in section 4.4.
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All information sent by the CTS within the LVL1 trigger is given to the front-end logic
as soon as it is available. The delay between the reference time and the arrival of the LVL1
trigger is usually between 2 µs and 5 µs depending on the sub-system. Here, the number of
intermediate network hubs and the types of data links is relevant while the length of cables
has a minor contribution only (see section 8.1 for detailed performance numbers).

Each valid or invalid trigger has to be acknowledged as soon as the logic is able to process
the next trigger (“busy release”). Parallel to this signal, a 32 Bit word containing status and
error is given to the trigger handler (see section 4.6).

The full interface between the trigger handler and the front-end logic is described in ap-
pendix A.2.

4.6. LVL1 Trigger Error and Status Information

The network packet sent by the Trigger Handler as busy release signal contains a 32 bit word
with error and status information of the trigger logic. Here, all error conditions of either the
LVL1 Trigger Handler or the front-end control logic are marked and information about buffer
fill levels is sent to the CTS. Most information is generated automatically by the trigger and
data handling logic, but all information can also be set by the front-end logic. The individual
bits of the status information are defined as described below. (The lower 16 Bit are used for
network information and are described in sect

Bit 16: Trigger counter mismatch

The trigger handler contains an internal counter of received triggers while the LVL1 trig-
ger sent by the CTS contains a trigger number as well. These two values are forced to be
syncrhonized to detect possible losses of trigger signals. If a discrepancy is found, a trigger
counter mismatch is reported.

Bit 17: Reference time missing

A normal trigger consists of both a reference time signal and the LVL1 trigger. If a LVL1
trigger is received without a preceding reference time, this is reported to the CTS.

Bit 18: Multiple reference times

If noise is introduced on the reference time signal, the trigger logic detects several reference
time signals. Since it can not be guaranteed that the signal actually sent by the CTS has been
used for data taking, this event might be corrupted.

Bit 20: Buffers half filled

The data buffers in the front-end can store a certain number of data words before read-out
must take place. If read-out is delayed further, the front-end will block triggers until the
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buffer is freed. This might result in a performance loss. Hence, the CTS is informed about
the fill-level of buffers and might take appropriate measures, e.g. lower the trigger rate.

Bit 22: Front-end not configured

Due to an error during the initialization phase, a front-end was not configured correctly and is
not able to record data for this event. Either the configuration can be repeated by an automatic
control logic in the front-end, or the initialization sequence has to be repeated.

Bit 23: Front-end error

Data recorded during an event can be corrupted as a result of various types of errors: The
answer from a front-end module can be missing, it might be not synchronized or an electronic
component failed. Such errors are reported as front-end error.

Bit 24: Spike on reference time detected

The reference time signal can be corrupted by short spikes that can have an influence on the
proper function of front-ends. This is detected by the LVL1 trigger handler and reported to
the CTS.

Bit 25: Trigger Time-out

TrbNet guarantees a maximal latency of the LVL1 trigger after the reference time of about
5 µs . If this time is exceeded, the recorded reference time is likely to be invalid.

Bit 26: Data missing or buffer overflow

The read-out logic is usually able to handle a limited number of data words only. In case of
misconfiguration or failure, this limit might be exceeded and subsequent data are lost.
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When receiving a trigger signal, all sub-systems perform the read-out of the front-ends and
store the data in internal buffers until they can be sent to the data processing servers .

This second step of the data acquisition process is controlled by the CTS in the same
manner as trigger distribution. First, a request is sent to all front-ends, which respond with
their data with a final termination packet. While the termination packet is transported back
to the CTS, all data is stripped by the Sub-Event Builders located in the network hubs and
forwarded to the server farm via Gigabit Ethernet.

During this process, all necessary header words are generated to match the data to the
HADES data format described in section 5.1. The following sections show the full read-out
process starting with the interface to send data in the front-ends and the CTS read-out request.
Data is forwarded by the network hubs where additional data words are generated and data
is sent to the server farm. Finally, the error and status information contained within the data
stream is explained in section 5.8.

5.1. Read-out Data Format

The HADES software tool-chain for data recording and analysis is based on a fixed data
format [57]. Every data file consists of a set of Events, which are divided into a number of
Sub-Events that might be further sub-divided into Sub-Sub-Events (SSE, see figure 5.1 for an
example). This structure was proved to be well suited throughout all levels of data processing
and does not need to be changed significantly for the upgraded DAQ system.

Each logical block within the file starts with a header as shown in figures 5.2 and 5.3. Each
header is generated in a different place within the DAQ system. The event header contains
the basic information about an event and is written by the Event Builders after merging all
sub-events.

The sub-event header and data structures below are generated within the DAQ network.
Here, the straight-forward implementation would be that all front-ends generate their own
sub-event header with all relevant information. Due to the vast amount of header data pro-
duced by all 500 front-ends, this is not feasible. Hence, sub-events are generated for sub-
sections of the detector only. More precisely, sub-event headers are written by the network
hubs that also serve as bridge to Gigabit Ethernet. In total this amounts to 27 sub-events for
each event.
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Figure 5.1.: The HADES Data Format. The left figure shows a typical HADES data file
(hld-file). It consists of events which are further divided into sub-events and
sub-sub-events. A more detailed view of a sub-event containing header, data and
trailer words is shown in the right sketch.

The last two words of each Sub-Event are formed by a trailer that contains the status
and error information (see table 5.3). The content of the error information is explained in
section 5.8.

Nonetheless addresses from each front-end are needed for correct interpretation of the
data. This information is given in a compact sub-sub-event header (SSE-Hdr). To simplify
the unpacking process every header contains a field with the length of the corresponding data
block. It should be mentioned, that this header does not need to be generated by the front-
ends by default but could be added later by the sub-event builder. This would reduce the
data bandwidth needed within the DAQ network but also makes generation of the sub-event
headers much more complicated: The HADES data format requires that the length of each
data block is known in advance. Inside network hubs this information can not be generated
since data is processed serially and not stored. Hence, length information is only available
after the full data stream has already been forwarded to the next network node. Opposed to
that, the full event is stored in the front-end modules and can easily be equipped with length
information in the header. Data integrity, especially if all sub-events belong to the same
event, can be checked based on the trigger number and code provided within each header as
well.

5.2. Event Data Interface

All data generated with an event is written to the Endpoint Data Handler through the Event
Data Interface (EDI). The layout of this interface is described in table A.6. Writing data is
allowed after a valid-trigger strobe signal until the user finalizes the transfer by assigning the
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Figure 5.2.: The HADES Event Header. Each event stored on disk is preceded by an event
header. It contains all information that is necessary to analyze the data contained,
i.e. the size, the exact time of recording and a unique event number.

Figure 5.3.: The HADES Sub-Event. The four-word sub-event header precedes each data
block sent to Event-Builders and written to storage. The end of a sub-event is
formed by a trailer that contains the error information transported in the termi-
nation word of the TrbNet protocol. A typical HADES event consists of about
30 sub-events. Each sub-event contains an arbitrary number of sub-sub-events.
A sub-sub-event starts with a one-word header (SSE-Hdr) followed by data.
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Figure 5.4.: A schematic view of the Endpoint Data Handler with its logical blocks.

finish signal. An example timing diagram of one valid event is shown in figure A.7.

The data format used is not fixed and can be defined arbitrarily based on the requirements
of the specific front-end. Nevertheless it is suggested that the data format contains a header
defining the data format and forsees to send debug information along with the data if re-
quested by the CTS.

The data handler is able to control a configurable number of Event Data Interfaces in paral-
lel. Thus, in case that the FEE read-out logic consists of several parts running independently,
each can fill the data in a separate buffer. A synchronization between the different input chan-
nels is not necessary. Each single input can terminate writing data to the buffer whenever it
is finished. This operation mode is used e.g. in the pre-Shower FEE were the read-out of the
12 ADC interfaces is done independently from each other.

Depending on the configuration of the data buffer, the LVL1 busy release signal is either
controlled by the front-end logic directly or the release is delayed until writing data to the
buffers has been finished. In both cases, the busy release is further delayed if the fill-level of
one of the buffers is above the critical threshold.

The correct setting for the buffer threshold depends on the operation mode: If the busy is
configured to be released after all data has been written to the buffers, the buffers must be
able to store at least one more maximum sized event. If the busy is allowed to be released
before writing data has been finished, the threshold must be at least two maximal sized events
below the buffer size because the fill-level after the current event is finished is not known.

The size of buffers can be configured in the Data Handler. Combined with knowledge
about the maximal event size generated by the front-end, all buffer handling can be done
internally in the Data Handler. The full list of configuration options is shown in table A.7.

In parallel, hidden from the event data interface, the data handler stores all trigger infor-
mation necessary to perform the read-out. These data include the trigger number, possible
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Figure 5.5.: The Central Trigger Systems sends a read-out request packet containing trigger
number, read-out information and event random code.

trigger information bits and the random trigger code. The full Endpoint Data Handler is
shown in figure 5.4.

5.3. CTS Read-out Request

The information contained in the request is shown in table 5.5. The random code and trigger
number sent with the request are used to identify the event in the buffer and to prevent event
mixing by checking this information in every network node that transports the data.

The read-out information contains configuration for the read-out chain, e.g. to which
Eventbuilder the data are supposed to be sent. The read-out type may be used to select
between different read-out methods in later applications, but is not used in the HADES DAQ
system.

5.4. Read-out Handler

The data are kept in the buffers until a read-out request from the Central Trigger System ar-
rives. As soon as the Read-out Handler receives the request, it reads event information and
data length from the buffer fifos. From these information, two header words are generated.
The first one (Event Information) contains the event number, trigger type and the event ran-
dom code as read from the buffer fifo. Additionally, one bit (“Pack-Bit”) is used to determine
how hubs should treat this data (see section 5.5).

The second word is the sub-sub-event header that contains the length of event data counted
in 32 bit words and the address of the endpoint. Afterward, data from all event data buffers
is retrieved and sent. The full data structure is shown in figure 5.7. The TrbNet termination
word sent in the end of each transfer contains additional status and error information about
the event as described in section 5.8. The full read-out data stream generation is shown in
figure 5.6.

The front-end sends the event information, data header and status information for each
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Figure 5.6.: A schematic view of the read-out data stream generation in the Read-out Handler.

event. It should be mentioned that this is done also when there is no event data available, e.g.
because no hit was detected.

5.5. Data Read-out Hub

The network hubs merge data from all connected down-links into one stream sent out on
the up-link. On the data channel, also a small amount of processing takes place. The event
information from all down-links are read and compared against the values in the read-out
request. Since during normal operation all event headers are identical, the duplicates do not
contain any additional information and can be discarded.

Regarding the sub-sub-event header, there are two possible processing scenarios: First, the
SSEhdr from all data streams may be kept and forwarded (non-packing mode). Secondly,
the SSEhdr may be processed and removed (packing mode). The first method may be used if
the network address contained in this word is necessary to correctly unpack the data during
analysis. The second one can be chosen if the address information is not necessary for any
further processing steps.

Which of the two operating modes is chosen is decided based on the “pack-bit” received
in the event information word: If this bit is set in all received data streams, then the packing
is enabled.
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Figure 5.7.: The data stream generated by the Read-out Handler. The first two words are
added by the handler based on trigger information and the number of data words
written by the front-end. The further data words are directly forwarded from the
data buffer.

In the HADES DAQ system, all front-ends send data marked not to be packed. Thus, their
address information is kept in the first stage of network hubs. The hub itself adds its own
SSEhdr with its own address and the total data length in front of the first front-end SSEhdr.
Here, the pack-bit is set to allow all subsequent hubs to merge the headers in subsequent
hubs.

The mixing of both operation modes has an advantage: The final data structure during
analysis does not change when adding an additional hub the data passes through: Indepen-
dently from the network setup, the data contains SSEhdr from the front-ends as well as from
the last hub that processed the data. All other hubs remain invisible to the the data stream.

After sending the event information and data header, all incoming data is forwarded in
a round-robin order. The resulting data stream from a hub with two connected front-ends
in non-packing mode is shown in table 5.9, the data structure in packing mode is shown in
table 5.10.As a last step, the error and status information from all data streams is merged
together with own error bits from the hub logic itself.

If desired, the operation mode may be switched to packing mode already in the first layer
of hubs thus removing the SSEhdr sent by front-ends. This can significantly reduce the
amount of data. Since the HADES system comprises of close to 500 front-ends each sending
a SSEhdr, the amount of data per event might be reduced by up to 2 kiB. This corresponds
to about 15% in a high multiplicity event or more than 30% for elementary proton-proton
collisions.

In the current data formats, most detectors depend on the information sent in the SSEhdr by
front-ends. Only the RICH data format would allow to remove the length/source information
from the front-ends but it is kept to keep the data structure identical for all sub-systems.
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Figure 5.8.: A schematic view of the processing of event data streams in the hub logic.

The first argument is, that the overhead generated by these words is negligible for the RICH
detector. A second point is, that the SubEventBuilder has to be able to add its own data words
to the end of the data stream and therefore needs to put its own length/source information to
the data stream. Without this SSEhdr word it would not be possible to detect the end of event
data and the start of SubEventBuilder information.

Debugging Information from Hubs

To send debugging information, the hubs are allowed to add an extra SSEhdr and an arbitrary
number of data words to the end of each read-out data stream. This data will then appear
as coming from another endpoint but with the network address from the hub. Clearly this
feature can only be used when the hub is used in a non-packing mode, since otherwise the
hub debug data can not be detected properly. Even though this feature is foreseen in the
protocol, it is not in use in the HADES DAQ system.
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Figure 5.9.: The resulting data stream after a hub merged two incoming data streams in non-
packing mode.

Figure 5.10.: The resulting data stream after a hub merged two incoming data streams in
packing mode.
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Figure 5.11.: A typical application of the streaming API. Embedded in a network hub (gray
box), it provides the interface to extract data from a TrbNet read-out process
and to send it over Gigabit Ethernet to the server farm.

5.6. Streaming API, Sub-Event Builder and Gigabit Ethernet

Interface

In a certain place, all transported data have to be bridged from TrbNet to another transport
medium like Gigabit Ethernet. For this purpose, the Streaming API has been developed. It
allows the read-out request to pass through from the CTS to the front-ends. The read-out
data stream, on the other hand, is received and forwarded on a data port. The logic connected
to this port now can process the data in any desired way. For example, all data can be sent
using another medium. A second port allows to send an empty read-out data stream or a
full, processed data stream further on to the CTS. A schematic view of the setup is shown in
figure 5.11

Typically, this bridge between TrbNet and GbE is placed in the same FPGA as the hub that
merges the data. All ports of the interface are described in tables A.10, A.11 and A.12. A
typical transaction on this interface is shown in the timing diagrams A.10, A.11 and A.12.

The Sub-Event Builder is the entity which converts data from the internal TrbNet format
(see section 5.4) to the standardized HADES Sub-Event format [57] as described in sec-
tion 5.1.

Both data formats contain essentially the same information and can easily be converted
from one format to the other. The rest of event data can be transported without any change.
This permits the read-out to be performed in a streaming mode which can be efficiently
processed in programmable hardware.

The resulting sub-events are stored in a Fifo buffer before they are further processed. The
further transports requires one or more sub-events being packed into a Hades-Transport-
Queue of up to 64 kByte size. For transport over Gigabit Ethernet these data packets have
to be split into Ethernet frames of up to 1.5 kByte/s each. An IP-core provided by Lattice
Semiconductors forms the low-level interface to the GbE network and is used to transport the
final data packets. A detailed description of the data processing and transportation steps can
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Figure 5.12.: The Sub-Event Builder converts the TrbNet data format to a HADES sub-event.
The data is transported without changes while header and trailer words are
regenerated.

be found in [58].
The target address the data packets are forwarded is stored in a configuration memory that

can be altered via slow-control. A total of 16 different targets can be configured. The CTS
decides to which event-builder data are to be sent by using a round-robin logic. Special event
types can also be forwarded to selected event-builders, e.g. all calibration triggers can be
collected in one data file [54].

5.7. The Event-Builders and Data Storage

The event data are transported using a industry-standard Gigabit Ethernet infrastructure to the
Event-Builder server farm as shown in figure 2.15. Each server hosts up to four independent
event-building processes [59]. Here, data from all sources are collected in a buffer memory
until all sub-events of a given event have been received. Subsequently, the HADES Event
Header is generated and data can be written to disk.

The local storage has a capacity of about 160 TB which is sufficient for several days of
data recording. In parallel data is forwarded to the GSI computing center and stored on tape
or in a distributed network file system (Lustre).

The event-building processes operate synchronously, i.e. one process acts as a master that
controls all other instances. That is, all data files are started and closed at the same time
which simplifies later data analysis. Information about date, time, file size and number of
events is automatically stored in a database.

5.8. Read-out Error and Status Information

As on all TrbNet channels, the end of a transfer is formed by a termination word containing a
32 bit error and status information code (see section 3.2.4 for details). The 16 channel depend
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words are selected to encode all information necessary for later analysis:

Bit 16: event number mismatch

In each data transport node (either a hub routing logic or the front-end endpoint), the trigger
number is checked for validity by comparison to the event number requested by the CTS. If
a mismach is found, the correct event number is inserted and this Bit is set.

Bit 17: Trigger code mismatch

Like Bit 16, this bit shows if there was a mismatch in the upper 16 bits of the DHdr, i.e. either
the event code or the trigger type does not match the one requested by the CTS.

Bit 18: Wrong length

The length of the data stream did not match the length given in the DHdr. The length is
checked in both the front-end and every network hub. If the front-end detects a mismatch,
this bit is set but data is forwarded without changes. If such a mismatch is detected in a hub,
excess words are deleted, but no padding is added if words are missing.

Bit 19: Answer missing

This bit is foreseen to mark events, where one front-end failed to deliver any data or the reply
contained no data. This functionality is currently not implemented.

Bit 20: Not found

The event number requested by the CTS was not available in the event data buffer on the
front-end. The implementation in the front-end handlers checks the next event in the buffer
and sends it in any case. Depending on the capbilities of the data buffer, other modes like a
look-up through all events waiting for read-out may also be implemented.

Bit 21: Partially found

This bit is set by the data handler in case of a problem with a data buffer. The event was found
and at least some data was sent. Due to an error condition, not all data could be delivered.
This may be caused by a buffer overflow or a limitation in the maximum number of data
words per events.

Bit 22: Severe problem

A generic error flag showing problems with the data buffer or the read-out. This bit is set
by either the read-out logic, the data handler in the front-end or the network hubs in case
of a problem that is not likely to vanish with the next read-out. If this bit is set, manual
intervention is needed to restart and resynchronize the read-out process.
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Bit 23: Single broken event

A generic error flag, marking an event as corrupted. In contrast to bit 22, only one event is
affected and the read-out can be continued.

Bit 24: Ethernet link down

The Ethernet link which is configured to transport data to the eventbuilders is currently not
working. Data has been either forwarded through TrbNet to the next network hub, or it
was lost. Even though this information can not be written to the Hades Subevent it belongs
to, the information is generated and transported to both other network hubs, which might
have a configured and established ethernet connection, and to the CTS which can store the
information. Based on this, an error message can be generated via slow control.

Bit 25: SubEvent buffer almost full

This status flag is used to transport the information about almost filled data buffers. This is
not an error since the inherent back-pressure of the network protocol will delay further read-
out requests until sufficient space for data is available. Nonetheless, the bit can be used for
monitoring purposes.

Bit 26: Ethernet / SubEventBuilder error

Either the Ethernet interface or the SubEventBuilder found corrupted data in the received data
stream. The result is either no data being sent for this event or data has been sent partially
only.

Bit 27: Timing trigger error

The reference time signal showed some irregularities during the trigger process. Either the
signal was missing, had spikes or mulitple edges were seen and may have corrupted data.
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One of the major parts of the HADES DAQ upgrade was the replacement of the MDC read-
out system based on new optical technology. The original MDC Read-out system was de-
signed almost 15 years ago. The reason for a re-design was the combination of the require-
ment for a higher read-out bandwidth for heavy-ion systems and to avoid the electromagnetic
noise produced by the massive parallel read-out busses.

The new read-out systems employs FPGA based boards mounted directly onto the front-
end electronics. All configuration and control features as well as voltage regulation are lo-
cated on these boards. The geometry of the detector puts strong constraints on the size of the
boards: Their footprint must be less than 4 cm× 5 cm and the amount of cables has to be
kept as small as possible. The parallel data read-out busses were replaced by a optical data
transport to improve both speed and the electromagnetic noise environment.

This upgrade is fully described in [21]. In 2010 further work was done on the read-out,
data reduction and monitoring structure which are described in detail in this chapter.

6.1. MDC DAQ Upgrade

The new MDC DAQ electronics consists of three parts: The old front-end electronics in-
cluding signal amplifiers (“Daughterboards”) and shapers and the TDC circuitry (“Mother-
boards”) was kept. Here, a set of ASD-8 [60] ASICs amplify, shape and discriminate the
signals of up to 96 detector channels. These signals are routed to TDCs [18] where all tran-
sitions are recorded and stored.

The electrical transceiver mounted on top of this board has been replaced by a new board,
the OEP (Optical End-Point). The OEP is equipped with a FPGA (Lattice ECP2/M-20),
voltage regulators and an optical transceiver. A schematic picture of the full MDC read-out
system is given in figure 6.1. A more detailed view of the front-end electronics mounted on
the frame of each MDC chamber is shown in figure 6.2.

The improvements of the new, optical read-out system are various:

• The data band-with for each front-end has been increased. The old system transported
data from up to three chained front-end boards at a rate of 180 MBit/s while the new
system runs at a speed of 250 MBit/s from each single front-end. The further paral-
lelized read-out also caused a significant lower intrinsic dead-time compared to the old
system [61].
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Figure 6.1.: A simplified view of the full MDC read-out system. Detectors are read-out via
front-end electronics. Read-out is controlled by Optical Endpoints (OEP) and
data are further transported to data combiners and the storage system. In parallel,
trigger signals and the power supply is distributed over dedicated fan-out and
voltage regulator boards.

Figure 6.2.: A simplified view of the MDC front-end electronics. The signals from the de-
tector are fed to a amplification and discrimination stage (“Daughterboards”).
The resulting signals are measured by TDCs (“Motherboard”). The full setup is
configured, monitored and read-out by a FPGA based logic (“OEP”).
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• Transmission of data on optical fibers generates no electromagnetic noise. The noise
produced in the old system by the wide read-out data busses led to an interleaved
operation mode since it was not possible to transport data while the TDC were sensitive
for signals. This caused a drop in both the achievable trigger rate and the maximal data
rate. With the new system, both operations can be run independently from each other
and fully in parallel.

• The amount of conducting connections between different parts of the system has been
reduced. With the old system, there were many so-called ground loops, i.e. two con-
nections of two points with the same electrical potential running over different paths.
Such setups can act like antennas and as such pick up electromagnetic noise and cause
fluctuations on power lines. With an optical read-out only the power distribution itself
and the frame of the chamber remain as conductive connections.

• Even though more additional functionality has been packed onto the front-end boards,
the current consumption of the whole system did not rise significantly. This is mainly
due to the high power consumption of fast drivers of electrical busses contrasting to
the quite low power requirements of optical transceivers. Additionally, the power con-
sumption of optical transceivers is constant while the current drawn by a electrical
transceiver strongly depends on the amount of data transported. A comparison of the
current consumption on the different voltage levels is given in table 6.1. It has to be
noted that the measurements from 2003 were done with pulser signals similar to real
signals [62] while the 2011 data were taken during a high intensity Au + Au experiment
so that some discrepancies have to be expected.

Nevertheless, the total power dissipated on the front-end modules increased. In the old
setup, all voltage regulators were placed in separated from the front-end modules and
the already adjusted voltages were delivered to the motherboards. To achieve a better
voltage stability, some regulators have been put on the new read-out controller boards.
The difference between input and output voltage of these regulators causes a power
dissipation which is in the order of 20% of the total power consumption. The available
cooling system for the MDC read-out system is able to cope with the additional heat
produced and keeps the temperatures of all front-ends within acceptable limits.

The read-out chain is completed by the MDC Optical Hub that receives data from two
complete MDC chambers (32 OEPs), packs the data into the HADES SubEvent structure and
forwards it to the eventbuilder server farm via Gigabit Ethernet as described in section 5.5.
The full setup with all components is shown in figure 6.1.

Furthermore, the low voltage power supply system for the FEE was rebuild. Central power
supplies generate all voltages required by the front-end systems22. These are distributed to

22The amplifier and TDC need voltages of 1V, 3V, 5V and -3V; the OEP needs 3.3V additionally.
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September 2003 August 2011
Voltage Current [A] Power [W] Current [A] Power [W]

5V 227 1135 185 925
3.3V – – 70 231
1V 65 65 158 158

+3V 159 477 158 474
-3V 157 471 153 459
Total 2148 2217

Table 6.1.: The low-voltage power consumption of MDC. Values from 2003 are taken
from [62] and were extrapolated to the full MDC setup. The power is calculated
using the nominal voltage levels. 2003 data were taken with artificial signals gen-
erated by a pulser connected to the chambers while 2011 data were measured
during heavy ion beam activity.

all 24 MDC chambers where all voltages are filtered and adjusted by voltage regulators. The
OEP houses another set of voltage regulators to keep voltage fluctuations to a minimum.

Further details of the new electronics can be found in [21].

6.2. MDC Read-out Controller

The full read-out controller logic for the MDC TDC is located in the OEPs. Here, all function
blocks needed to control the FEE and adapt to the common HADES trigger and read-out
network are implemented. In detail, these blocks are: Trigger Handler, TDC Read-out, Data
Handler, TDC configuration and the statistics and monitoring. A graphical representation of
the blocks is given in figure 6.3.

Trigger Handler

This logic controls the full data taking sequence. For normal triggers, the incoming reference
time signal is received by the OEP and forwarded to the TDC chips. If a calibration trigger
is requested, the correct configuration is loaded in the TDC. Afterwards, the read-out of data
from TDC is requested. Additionally, the configuration sequence is supervised and repeated
everytime the motherboard produces an error during read-out.

TDC Read-out and Data Handler

During a trigger or calibration event, a read-out of the data is performed by sending a read-out
token to the TDC. This token is handed through the chain of TDCs. The TDC that currently
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Figure 6.3.: The structure of the logic implemented in the FPGA on the OEP boards can be
sub-divided into six main blocks. A detailed description of each block is given
in the text.

has the token is allowed to actively sent its acquired data using the common data bus on the
motherboard. The CPLD chip reads the data and divides them into smaller words which are
sent to the OEP separately23 and are received by the read-out handler in the OEP.

The data handler analyzes these data words, data cuts are applied (see section 6.4) and the
remaining data is packed into the MDC data structure (see section 6.3). If configured, the
data handler adds debugging information to the data stream. If a status information trigger is
processed, data from status registers is read and sent instead.

TDC Configuration

The configuration component of the read-out controller communicates with the devices lo-
cated on the motherboard. These devices are a set of 8 or 12 TDC, a CPLD and several
digital-to-analog converters.

During the start-up of the DAQ system, they have to be provided with the correct con-
figuration. Here, the data bus on the motherboard used for read-out of the TDC is used
in a different mode: The OEP becomes master of the bus and sends addresses and data to
the motherboard. Data are received by the corresponding device and stored in the selected
memory location. Additionally to the data bus, the TDC are controlled by a set of signals se-
lecting the operation mode. The complete start-up sequence is formed by a defined sequence
of changes on these mode signals and writing data to registers.

The settings loaded to the TDC include the configuration of time resolution, spike suppres-
sion and operation mode, e.g. the number of signal edges recorded with each measurement.
In addition, digital-to-analog converters are adjusted to produce threshold voltages for the
discrimination stage.

23This functionality was needed in the old DAQ system since it was not possible to transport data with the full
bus width of 20 bit to the read-out controller.
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6.2. MDC Read-out Controller

All necessary settings are loaded from an internal memory. Here, default values have
been stored that bring the TDCs to a working mode so that they can perform all necessary
options. The specific configuration for each front-end board can be updated at any time using
regular slow control accesses. The new settings are loaded with the next reconfiguration
of the motherboard which can also be requested by slow control. The typical configuration
sequence needs about 4 ms.

When a calibration trigger is being preformed, the configuration logic reconfigures the
TDC to a special working mode. In this mode, a set of three internal calibration pulses is
generated by the TDC. All six edges of the signal are measured by the TDC and read out
afterwards.

It may happen that a TDC fails to work. For example, the read-out request is not answered
or the proper configuration was lost due to an error in the electronics. This case is detected by
the read-out logic, i.e. a time-out is applied while waiting for data from the TDC. If the time
limit is reached, a reconfiguration of the motherboard is performed. Only after a successful
configuration the busy release packet is sent to the CTS so that no data is lost during the
process.

6.2.1. Statistics and Monitoring

In parallel to the configuration and read-out, a number of on-line statistics is generated. The
amount of all kinds of errors is being recorded. Among these, the number of failed read-outs
from the motherboard and the total amount of data words is recorded. The number of invalid
data words which have been rejected data words due to the limits set for TDC measurements
is counted.

The time spent by the front-end during different steps of the read-out process are measured
to gain detailed information of the dead-time produced by each board as well as its causes.
Moreover, different types of errors during operation such as errors on the reference time
input or transmission requests are counted. These statistics are available from slow control
registers. They are also included in the read-out for each status trigger issued by the CTS. The
full list of status information returned is given in table C.11. The status of all state machines
dealing with front-end operation is also available from register (see table C.12).

During configuration of the motherboard, the settings stored in the internal registers of
the TDC is read back and stored in a memory which can be read out by slow control and
processed by a software tool. Several more registers that reflect the current status of each
internal logic component are available as well.

The OEP is equipped with an ADC that monitors all supply voltages. These are auto-
matically measured and compared to pre-set minimum and maximum values. The range of
fluctuations on the voltage and the current voltage are made available to be read by slow
control. The corresponding control and status registers are described in table C.9.
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6.3. MDC OEP Data Format

With 372 front-end modules the MDC system forms a major part of the HADES DAQ system.
The big amount of individual channels (more than 27,000) and the high number of channels
affected by a single particle (up to 30) generates a big amount of data. In a central Au+Au
collission the production of about 200 charged particles is expected. In total, this sums up to
more than 5,000 active channels per event.

The data delivered by the TDC for each channel consists of two words (“hits”). One hit
containes the time of the rising edge of the signal (Hit 1), the other gives the time of the
falling edge (Hit 0)24. Each data word is made up by the 11 bit time stamp, a 4 bit TDC
number and a 3 bit TDC channel number plus a marker for the hit number. Thus, each hit
generates 19 bit of information.

Nonetheless, the two hits generated for a normal input signal contain redundant data since
they come from the same TDC channel. The amount of information for one channel sums up
to 29 bit. This size can be fit into one 32 bit data word sent on the data channel leaving space
for three bit of additional information to further mark the data format.

The other type of data generated by a calibration trigger returns six hits for each TDC
channel which can be separated into three individual data words, each containing times from
two hits.

The final MDC data format contains three different types of words: A debug format, con-
taining a single hit and transporting all information delivered from the TDC. A packet format
with two hits per data word that already is filtered for invalid data from TDC. The third
type are status words that contain statistical information or additional words for debugging
purposes. The definition for all three types of data words is shown in table 6.2.

The standard data format is the compressed format that results in the lowest possible over-
head. The disadvantage of this format is that seemingly corrupted data from TDC is already
removed since transporting single hits is not possible in this format. For debugging reasons
the extended debug format is available transporting each hit sent by the TDCs separately in a
data word.

The status words are used for two purposes: During a normal read-out additional data like
the state of the trigger counter can be included. When a status trigger (type 0xE) is performed,
only status words are returned. They include all kinds of information and statistical values
generated in the read-out logic that can be needed for analysing the data. Each status word
contains a payload of up to 24 Bit and a 5 Bit word identifier. The identifier guarantees that
data can be interpreted without being dependent on a fixed structure or sequence of status
words. All status words are listed in table C.11.

During a status trigger a total of 21 words (i.e. codes 0x00 through 0x14) are sent. If the

24The rising edge gives the precise timing information while the length of the signal encodes the amount of
charge deposited.
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Bit Debug Format Compressed Format Status Word

31 – 29 000 100 010
28 – 25 TDC number TDC number word code

24 TDC channel TDC channel code
23 – 22 TDC channel TDC channel data
21 – 11 Bit 21: Hit number, rest 0 TDC data - Hit 1 data
10 – 0 TDC data TDC data - Hit 0 data

Table 6.2.: The MDC data format. Three different types of data words are defined. One
contains raw data from TDC, one contains matching hits from the same channel
and a third type is defined for status and debug information.

user selected to send dummy data for testing purposes, these data are also marked as status
word (i.e. word type 0x1E).

6.4. Data Filtering and Reduction

Despite repacking data with two hits in one word, data received from the TDC can be further
filtered to reduce the overall amount of data. On one hand, all relevant data from an event is
found within a defined time window. On the other hand, a fraction of data words is corrupted
and can not be related to actual signals in the detector.

In an ideal case, the TDC only sends data that contains both Hit 0 and Hit 1 from the same
channel of a TDC. The actual data contains a fraction of words with time equals 0 and three
hits from the same TDC channel. This is caused by an internal error of the TDC and thus
can be filtered from the data stream. In some cases, one of the two hits is not sent. Since the
remaining one time value is not sufficient for full analysis, it can be selected to be discarded
as well.

The data also contain a number of hits that are not caused by a particle in the detector
but by electromagnetic noise. If the logic is able to distinguish this type of hits, they can be
filtered. All signals correlated with real particles are located within a time window of 200 ns
for the inner chambers and 500 ns for the outer chambers and all show a specific range of
pulse widths (i.e. the difference between both hits in one channel). Thus, all hits that lie
outside of this window or have a very short or very long pulse width can be filtered. This is
especially helpful since the internal spike suppression of the TDC does not reject all short
pulses (below 13 ns as selected by the default configuration).

All data filtering can be configured during run-time by a set of registers in the OEP. These
registers are described in table C.8.
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Lossy Data Reduction

A further compression of data is possible if a loss of information is acceptable. This is
possible, since data is not randomly distributed but shows very specific values for real signals.

Each data word contains the measured times and a TDC channel address. This address
has to be further supplied with the OEP network address to determine the exact location of
the active channel. This information is transported in the SSE-Hdr which are automatically
generated in the network endpoint. This 32 bit header word is generated for each of the 372
front-ends in the system, resulting in 1.4 kByte of data per event. This is a significant fraction
of the total data volume, especially for low-multiplicity events.

The information needed to attribute a data word to a specific channel is only 4 bit since
only the motherboard number on a given chamber is needed. The information about sector
and plane is already contained in the SubEventHeader generated by network hubs. If this
information can be packed inside a data word, the additional header could be skipped. With
the current data format, only 2 bit of each data word remain unused.

From data taken during past experiments, it is clear that all times measured for real parti-
cle signals fall within a window of about half the TDC range. Additionally, the time-over-
threshold of the signals is always below 500 TDC units (i.e. on quarter of the full range)25.
Thus, the data transported can be changed to contain a 10 bit timestamp for the time of the
rising edge of the signal (thus saving one bit of information). Additionally, instead of the
time of the falling edge the time-over-threshold can be computed.

25The actual pulse width can be longer in rare cases but it can safely be assumed that limiting the range does not
affect the efficiency of data analysis.

84



7. Slow Control and Monitoring

Besides trigger and read-out, the third main component of the data acquisition system is
formed by the slow-control. Here, all features that do not directly belong to the trigger and
read-out system are integrated. The interface provided within all network nodes is described
in section 7.1. All functions are provided based on an address space that spans the full read-
out system and thus gives the possibility to directly access each individual information.

The configuration for each individual front-end is loaded and checked during the start-
up phase of operation (see section 7.2.1). During operation of the data acquisition system,
the slow-control interface is used to monitor the current status of the whole system. Online
statistics about data rate and dead-times are generated along with information about possible
errors within the front-ends. These features are shown in section 7.3.

An overview of the software available for basic monitoring and control purposes is given
in appendix D.

7.1. The Slow Control Interface

Besides basic management functions like assignment of network addresses, all slow control
features are implemented based on addressable registers. The interface between the network
end-point and the user configurable logic is provided by the RegIO (Register-Input-Output)
component. It provides a set of built-in registers and functionality as well as a multi-purpose
data and address bus where any other functions can be connected. An overview of the address
ranges is given in table 7.1.

The internal functions include a set of status and control registers common to all endpoints
and a range of freely usable registers. Basic information about the endpoint, hardware and
firmware version are stored in a read-only memory.

The internal data bus is implemented as a typical data/address-interface using a read/write-
strobe signal and several feedback strobes. To guarantee a proper function of the slow control
channel even in case of a failure of the user logic, the response time on the data bus is limited
to 16 clock cycles after which a response must have arrived or an error will be reported. All
possible responses to a read or write request are shown in timing diagrams in appendix A.4.

The address range available on the data bus is further divided into the network part (ad-
dresses up to 0x7FFF) and the user part (0x8000 and above). The network part is dedicated
for all registers provided by the endpoint or hub logic such as information from the read-out
buffers. The upper address range is freely configurable.
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Addresses Purpose

0x00 – 0x1F Common status registers. These registers are identical on all front-
ends and are used to collect information about the current operational
status of the boards.

0x20 – 0x3F Common control registers. These registers are identical on all front-
ends and provide basic control signals for front-end configuration.

0x40 – 0x4F Board Information ROM. This memory stores basic information
about the hardware and firmware version of the board

0x50 – 0x5F Timers are used to provide a time stamp and clock ticks for seldom
updated logic parts.

0x80 – 0xBF User defined status registers. Up to 64 status registers can be defined
and used to provide any kind of information.

0xC0 – 0xFF User defined control registers. Up to 64 control registers are used for
additional configuration values.

0x0100 – 0xFFFF These addresses are forwarded to the internal data/address port and
can be equipped with any kind of logic.

Table 7.1.: The slow control interface provides a set of different functions based on address-
able registers. A full list of common registers is available in appendix C.1

Independent from the data bus, the data from the on-board 1-wire temperature sensor is
retrieved and used to allow the slow-control system to assign addresses to all network nodes.

The register interface does not only provide single register accesses but also block-
read/write operations. Here, one TrbNet slow control request triggers several accesses on the
internal data bus. The request selects between two modes: The first one executes repeated
accesses to the same internal register address while the second one uses an auto-increment on
the address. Hence, the first mode is suitable to read data from a fifo memory and the second
mode can be used to read or write data from an addressable memory block.

Lastly, the reply data for a read access contains an internal time stamp with 16 us res-
olution26. This timestamp is used to precisely determine the time delay between two read
accesses and enables monitoring software to exactly measure change rates of values, e.g.
amounts of data sent per second.

Error Information

Similar to the other network channels, the slow control channel features a set of error infor-
mation bits that are sent with the termination word of a reply. If a request to a non-existent

26This resolution was selected as a compromise between word size (which is limited to 16 bit due to the TrbNet
packet size) and rate of overflows of the counter (about 1 Hz).
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address is received or the given address can not handle the request type of access, a “unknown
address” flag (Bit 16) is set.

If the address corresponds to a fifo or register which is currently empty and does not
contain data to read or a write access to a register is currently not possible (e.g. due to a busy
handler for this address), the “no more data / retry” flag is set. If the user logic fails to answer
a request within the given time-limit, a “timeout” flag is set (Bit 17).

7.2. Slow-Control Features

7.2.1. Start-up and Configuration

The full start-up of the DAQ system is controlled by the startup program. All configuration
is provided in the form of script-files or text based database files which are read by the script
and executed. These script do not only include TrbNet accesses but also all other operations
that have to be carried out on various computer systems.

The custom scripting language contains conditional executions that can be controlled via
command line options to select from all available configuration options. E.g. all sub-systems
can be activated individually or various thresholds can be selected. The script also automati-
cally checks if all TRB boards and other CPUs are available and accessible. The current DAQ
network configuration is determined and a list of all connected front-end boards is written to
the main beam-time data base.

Settings that are loaded to registers are provided in a database format as shown in fig-
ure D.1. Further information about the start-up scripts and configuration files formats can be
found in [63].

The configuration options available are dependent on the front-end type. The configuration
and status registers available in the MDC system are listed in section C.3. These include the
full setup for the TDC ASICs and reference voltage DAC contained on each MDC mother-
board. The settings are stored in an internal memory block and are loaded to the motherboard
when a re-configuration is requested; i.e. either during the start-up process or by an explicit
request via slow-control. The data reduction algorithm can be configured and certain au-
tomatic error recovery functions can be toggled on or off. Network hubs are also widely
configurable. A brief description of all features included can be found in section 3.4.2.

7.2.2. Monitoring and Online Statistics

All network nodes and logical function blocks contain a set of monitoring and statistics fea-
tures. These show the current status of the most important functions and state machines, the
state of external signals and many more things. Here, only few examples can be given:

All front-ends provide a memory block in which threshold and pedestals for each individ-
ual channel can be stored and automatically applied during data taking. The MDC front-ends
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additionally contain a huge set of monitoring and statistics features. Here, times spent for
different operations, number of data words and error information can be retrieved. A more
complete description is given in section 6.2.1.

The network hubs contain registers for the status of each network link, the amount of
data transferred and the received error messages. A more detailed description is given in
3.4.2. The central trigger system contains a huge set of monitoring features that can be found
in [54]. It contains records of the count rates on start and veto detectors with configurable
time resolution.

7.2.3. Common Slow-Control Features

All front-ends contain a set of pre-defined registers with basic information about the current
status of the front-end. Moreover, common control registers are defined for basic accesses,
like gating the reference time input.

A set of nine status registers give an overview of the operational status of the front-end.
The first register contains error flags and gives direct access to all error conditions. Five
registers are assigned to the status of the trigger handler and contain counters for all kinds of
erroneous reference time signals. The LVL1 and read-out handler share two further registers
which allow to monitor the synchronous operation of all front-ends. Lastly, a register reports
the status of the error correction algorithm used on some optical links. Depending on the type
of network node, not all registers are in use. I.e. network hubs do not contain information
from the trigger handler. The full list of common status registers is given in appendix C.1.

Two common control registers are defined for basic control of the front-ends. One register
contains strobe signals which are used to trigger actions in the FPGA such as clearing status
registers or reinitializing front-end modules. The second register contains persistent configu-
ration flags, e.g. to select a event data format or to enable sending of debug information. The
common control registers are described in detail in appendix C.1.

Three registers are connected to an internal read-only memory that contains information
about the compile time and version of the FPGA design as well as a hardware identifier.
These information is set during the compilation and allows the slow-control software to
identify boards. This method is used for example within the Flash programming routine
to prevent loading of a design not matching the actual hardware. A further register provides
a microsecond clock that can be used to tag data or status logs.

7.3. System Monitoring

A crucial point is the visualization of all available monitoring data in a way that allows for
a fast detection of possible errors in the data acquisition system. At the same time, detailed
status information about individual aspects of the system has to be available to a large group
of people.
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Figure 7.1.: The Monitoring Tool Hmon consists of a set of individual tasks that collect,
analyze and visualize data from many sources. The information can be accessed
via a web server and is stored in a logfile and an archive for later analysis.

Figure 7.2.: Examples of the information provided by Hmon tools. Top: temperatures of all
372 MDC front-ends. Bottom: beam intensity history.
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Figure 7.3.: The tactical overview window provides a condensed overview of the status of
various aspects of the system. Errors are shown by changing colors.

A simultaneous access of all users to the DAQ system is not desireable due to the high
load generated on front-ends and servers. Hence, a set of independently running monitoring
scripts collect and process information continously. This data is provided to a web-server
from which all users can retrieve the data. In this setup, the number of users has only a
marginal influence on the load on all systems on the data acquisition system. In parallel
to providing online data to all clients, part of the information are stored on disk for later
analysis of all errors within the system. A schematic view of the monitoring system is given
in figure 7.1.

The tools collect data from various sources, such as TrbNet, EPICS [64] or direct access
to other computers over ssh. This data is analyzed and visualized in different ways: the
HadPlot tool (see chapter D) provides diagrams while a lot of information can be displayed
by pure HTML code [65]. Two examples of information windows are shown in figure 7.2.
All data collectors generate a short status information which is shown in an overview window
(“Tactical Overview”, see figure 7.3). Here, the current status is shown with a short and a
detailed message as well as a color-coded state information. The operator observing the
DAQ system can also access further information and possible error handling routines from
this window.
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8. DAQ Performance

As described in the previous chapters, the complete data acquisition network has been im-
plemented and was successfully used during several commissioning runs. During these ex-
periments, the performance of the new DAQ system was determined which is shown in the
following section. Moreover, a comparison to calculations based on simulation, tests and
measurements done with laboratory setups is discussed. Here, the most important numbers
are the latency of information transport (see section 8.1), the dead-time of the detectors and
the read-out time for each event (see section 8.2). Finally, a summary of the latest results of
the August 2011 test experiment is given in section 8.4.

The HADES data acquisition system and electronics is also used in various external test-
setups and experiments which are briefly shown in section 9.1. Moreover, additional possible
improvements of the DAQ system are evaluated and ongoing developments in electronics are
described in section 9.2.

8.1. Latency Measurements

One of the most critical parameters for the HADES DAQ network is the latency for data
transmission. This time directly influences the dead-time of the whole system since the arrival
of the busy-release signal of the slowest sub-system defines the time when the detector is able
to record the next event. Table 8.1 shows a set of all relevant latency measurements for parts
of the network.

The tables lists the fixed latencies introduced by the serdes27 IP-core within the FPGA,
separate for four different configurations (with or without clock tolerance compensation (see
below) and 2 GBit/s or 250 MBit/s speed) used in the network. Since this latency directly
scales with the clock speed of the serial data stream, the 250 MBit/s link have a latency that
is roughly eight times higher than on 2 GBit/s links28.

Additional time is spent for data preparation and data reception within the media interfaces.
Here, the 2 GBit/s link is dominated by the time required to transfer data between different
clock domains since the serdes block uses a clock source distinct from the internal FPGA
27Serializer/Deserializer. The serialization of data is necessary to transport them over a single wire or an optical

fiber. A serdes converts a serial data stream into a data word and vice versa. In FPGAs, the serdes is
a dedicated block within the device that provides the necessary functions, including encoding of data and
recovery of the clock signal from the data stream.

28Slight deviations are due to different configuration of the width of data interfaces
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Measurement TX [ns] RX [ns]

Serdes 2 GBit/s CTC (Hub) 60 145
Serdes 2 GBit/s (FEE, Hub Uplink) 60 70
Serdes 250 MBit/s CTC (MDC-Hub) 360 1,040
Serdes 250 MBit/s (OEP) 360 440
Media Interface 2 GBit/s 60 70
Media Interface 250 MBit/s 260 660
Media Interface parallel 20 60
10 m optical cable 55
Hub Logic (LVL1, SCtrl) 180
Endpoint Logic (FEE) 120
CTS reference time to LVL1 generation 550

Table 8.1.: Calculated Latency Times for various logical blocks within the DAQ network.
Serdes latencies are mean values as given in [66], other blocks are derived from
code, simulation or measurements.

Figure 8.1.: The time difference between the reference time signal and the LVL1 trigger is a
measure for the total latency of data transmission in the network. The plot shows
the time in units of clock cycles (10 ns) for each of the 372 OEP within the
system for a given event. The single peak is caused by a delayed LVL1 trigger
packet due to other network traffic.
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Component CTS -> FEE [ns] FEE -> CTS [ns]

Hub version 2 network hub 710 785
MDC Hub 1,380 2,055
FEE Endpoint 290 270
MDC OEP – CTS 4,270 4,610
Shower FEE – CTS 2,470 2,580
RICH / TOF / RPC FEE – CTS 2,060 2,210

Table 8.2.: The latencies of several important components and data paths of the DAQ system.
The values are summed based on table 8.1.

logic. The 250 MBit/s interface latency is to be attributed to the error detection and correction
logic. In particular, the transmitter has to pass data through an additional buffer stage while
the receiver has to collect and analyze a full network packet before it can be forwarded to the
network endpoint.

Last, the contribution of a network hub stage as well as a network endpoint are both well
below 200 ns. Table 8.2 sums up the different contributions for the main components in the
network: The latency between the input of a network hub and its output is 710 ns and 785 ns,
respectively, for up- and down-link. In the front-ends, about 300 ns is needed to receive data
and offer it to the application and vice versa. The full network path between CTS and MDC
front-ends amounts to 4.3 µs to 4.6 µs, while other the latency for other sub-systems are
lower by roughly 2 µs.

The latency for the busy-release packet to be transported from the FEE to the CTS is
longer than the latency in the opposite direction. This is due to a different configuration
of the serdes module in case several inputs are used on one serdes bank29. Here, the clock
tolerance compensation (CTC30) feature of the serdes is activated to reduce the necessary
amount of ressources in the FPGA. This feature introduces a latency of 15 clock cycles in
average (75 ns on 2 GBit/s links, 600 ns on 250 MBit/s links). In total, this sums up to an
additional latency of 750 ns for MDC front-ends and 150 ns for the other systems.

The actual latency values can easily be obtained in the detector setup, since all endpoints
measure the time interval between receiving a reference time signal and the corresponding

29The internal configuration of the FPGA groups four serdes modules in one serdes quad that shares specific
features. Furthermore, the FPGA is not able to handle a setup where 12 serial links are all receiving data at
distinct clock speeds. Hence, a special operation mode (Clock Tolerance Compensation - CTC) had to be
chosen were the clock for received data is adjusted to the internal clock of the FPGA.

30Clock Tolerance Compensation. Data transmitted by one board usually has a slightly different clock speed
than the one used on the receiver side. Hence, care has to be taken to transfer data between the two clock
domains without loss. The serdes modules contain a special block, CTC, to adapt the incoming data stream
to the internal clock by adding or removing “idle” words
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Subsystem calc. Latency meas. Latency

MDC 4,820 4,820 – 5,020
pre-Shower 3,020 3,050 – 3,150
RICH / TOF / RPC 2,610 t.b.d.

Table 8.3.: The actual latencies have been measured based on the time difference between
the reference time signal and reception of the LVL1 trigger. The time measured
includes the time needed by the CTS to generate the LVL1 trigger of 550 ns.

LVL1 trigger. Figure 8.1 shows this value for the MDC front-ends in units of 100 MHz
clock cycles. The measured time of 4.6 µs to 4.8 µs for all boards matches the theoretical
expectation. A small subset of boards report a latency of up to 5.2 µs. This is caused by other
traffic on the optical network that can delay the transportation by up to one packet length. In
case of the 250 MBit/s links, this time is 480 ns.

The different cable length depending on the position in the detector is not visible in this
plot since the cable lengths for reference time and optical signals are almost identical and the
speed of light in both media is comparable. Hence, their contribution to the measured latency
cancels out.

The measured latencies include the time the CTS takes to generate the LVL1 trigger after
a trigger decision. In the current implementation, this time is 550 ns between sending the dif-
ferential reference time signal and starting the LVL1 trigger transmission. Table 8.3 shows
the measured latencies for the MDC31 and pre-Shower system which agree with the calcu-
lated values within a small error. The latency of other subsystems could not be determined
because in the FPGA firmware the required measurement logic was not implemented.

8.2. Read-out Time and Dead-Time Estimations

The event rate is basically limited by the read-out time. In some sub-systems, the time can
vary greatly depending on the number of data words produced. Table 8.4 gives an overview
of the minimal and maximal times needed to transfer data from the front-ends. These times
can be compared to the theoretical values based on the expected occupancies as given in
table 2.3.

The pre-Shower and RICH sub-systems have a fixed time which does not depend on the
number of data words per event. Here, the time is defined in the multiplexing stage of front-
end channels to ADC input channels. E.g., the pre-Shower front-end has an intrinsic read-out
time of 300 ns per pixel row and a total of 32 rows resulting in a total time of 9.6 µs.

In the TDC based sub-systems, data has to be transferred from TDC to the FPGA. The

31The MDC latencies were corrected by an additional offset of 220 ns due to a fixed delay of the reference signal
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8.3. Read-out Bandwidth

System Min. time [µs] Max. time [µs] Typ. Au+Au [µs]

RICH 5.21 6.11 5.71

MDC 0.6 38.4 7.6
Shower 9.6 9.6 9.6
TOF TRB 0.5 3.6 1.0
RPC TRB 0.5 3.6 0.7
other TRB 0.5 3.6 0.7

Table 8.4.: Transmission time for the read-out of the front-end electronics. The second and
third columns show times for minimal and maximal data words. Times for a
typical Au+Au event are given in the last column.
(1) It should be noted that the actual dead-time is lower due to analog buffers
within the front-ends.

transmission needs a fixed time for each data word to be sent. The MDC system has a very
long read-out time of almost 40 µs in the case that all TDC channels deliver data. This time
is reduced to 8 µs for an typical occupancy of about 20%.

The typical read-out time for the full system is given by the slowest sub-system which is
not identical to the system with the longest typical read-out time. The amount of data per
front-end varies both by event-by-event fluctuations and the position in the detector. This
leads to a variation in the read-out time. Especially the MDC front-ends where a single board
only reads a very constraint part of the detector show a high fluctuation factor of approxi-
mately 4. Hence, the total read-out duration of the MDC system is given by the board with
the highest occupancy that has an approximate read-out time of 15 µs.

The lower limit of the dead-time is given by the read-out time of the slowest front-end
system plus the latency of the busy-release packet to the CTS. The latency of the LVL1
trigger can be neglected since read-out already starts with the reception of the reference time
signal.

The reference time signal arrives about 400 ns after the physical event and the busy-release
latency is 2.6 µs as shown in table 8.2. The total dead-time sums up to 12.6 µs, corresponding
to a trigger rate of 79 kHz. The typical dead-time is given by the MDC read-out time (15 µs)
plus the latency for the busy-release signal (4.6 µs) and the reference time generation delay
of 420 ns. The resulting time is 20 µs and the accepted event rate is 50 kHz.

8.3. Read-out Bandwidth

The band-width available for event data transport of the full system is limited by the number
of Gigabit Ethernet links available. The bandwidth of the TrbNet links is not relevant since
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System GbE links Data rate [Mwords/s] factor
available expected

RICH 3 37.5 9 4
MDC 12 150 90 1.5
Shower 6 75 10 7
TOF TRB 1 12.5 2.5 5
RPC TRB 2 25 11 2
others 2 25 4 6

Table 8.5.: The bandwidth for event data transport is mainly limited by the number of Gigabit
Ethernet links connected to each sub-system. The available bandwidth is well
above the expected data rates for all sub-systems.

it is, in general, higher: 1.2 GBit/s net data rate compared to 400 MBit/s per Ethernet link.
The same holds for the 160 MBit/s optical links within the MDC system, since 32 front-ends
share one Gigabit link.

Table 8.5 gives an overview about the available data bandwidth and and a comparison to
the expected data rates as shown before. The available bandwidth is well above the expected
rates for all sub-systems. The MDC sub-system has the lowest free bandwidth of about 33%
while all other systems have a bandwidth reserve of 70%. This guarantees that data transport
is never a limiting factor for the complete system.

8.4. August 2011 Test Run

In August 2011 an experiment to test the capabilities of the tracking system in heavy ion
reactions was conducted. In parallel, all parts of the data acquisition were tested as well. The
accelerator delivered a Au beam at 1.25 AGeV and a typical intensity of 1.4×106 particles
per second. The target was a 15-fold segmented gold foil target with a mean interaction
probability of 1%.

MDC Optical Link Error Correction

The efficiency of the retransmission system on optical links of the MDC system (see section
3.3.4) is clearly visible from figure 8.2. In average 40 retransmissions are necessary per
minute under high-intensity (1.8 × 106 particles per second) beam conditions. All errors
were successfully corrected. The majority of errors was detected by the receiver of the OEP
as was expected from the increased noise environment in the vicinity of the detectors.
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Figure 8.2.: Rate of transmission errors on the MDC optical links. The histogram shows
the number of retransmission requested in both link direction during 5 minutes
under high intensity beam conditions. Roughly 200 requests have been issued in
the complete MDC DAQ system, most errors occurred on data received by the
front-ends.

Amounts of Data Reduction in MDC

The MDC front-ends applies selections on the TDC measurements. E.g., all data with a
measured time below 140 ns are discarded. TDC channels which miss one time measurement
are also not stored. As shown in figure 8.3, the average reduction under beam conditions is
about 10% but is much higher on some front-ends. It should be noted that these selections
reduce the data but leave the over-all busy time of the detector unchanged. This is due to the
fact that the time is mainly fixed by the read-out time of the TDC and the amount of data
transferred between motherboard and OEP is not affected by the cuts.

The figure also shows one chamber of MDC plane 3 which was not supplied with high
voltage and three front-ends that don’t deliver any data due to a hardware failure.

Micro-Structure of the Beam

The start detector in combination with the monitoring features of the CTS provide an ideal
tool to examine the changes in beam intensity with very high granularity. The micro-structure
of the particle beam extracted from the accelerator shows large fluctuations on the scale of
10 µs which are visible in figure 8.4. This measurement was done at a beam intensity of
1.8×106 particles per second, i.e. a mean rate of 10 particles per data point. The maximum
rate summed over the whole start detector can be as high as 60 particles per 10 µs but also
shows intervals of more than 50 µs without any particle. The effect of these inhomogeneities
can be seen in the fraction of events actually recorded as shown below.

Detector Dead-Time

Figure 8.5 shows the dead-times of the different sub-systems. The total dead time is shown
in blue (large bars); additionally the exclusive busy time, i.e. the time during which only one
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Figure 8.3.: The front-end logic of the MDC OEP apply cuts on the measured time (> 140
ns) and also discards data from TDC channel that do not deliver times for both
edges of the signal. In average, 10 to 20 percent of data is filtered by these cuts.

given system was busy, is shown in red. As expected (see section 8.2), the MDC system,
separated in an inner and an outer half, shows the longest dead times followed by the Shower
detector. The dead-time of the full system is about 5% higher due to additional latency
between the point of measurement (i.e. the central TrbNet hub) and the CTS as well as
trigger generation delays.

The read-out time of different MDC front-ends shows the expected variations. The read-
out time per event averaged over all motherboards is 7.4 µs. Some boards, especially in plane
I, show a much higher time of up to 20 µs due to a high occupancy. It has to be noted that
these values are averaged over thousand events so that event-by-event fluctuations are not
taken into account.

The trigger rate at the time the dead-times were measured was 10 kHz, combined from
8 kHz semi-central (multiplicity 20 or more in TOF) and 2 kHz peripheral (multiplicity 5
or more in TOF) events. Even though the dead times do not scale linearly with trigger rate,
especially due to limitations in data transport rates, it can be stated safely that the DAQ system
is able to handle the projected 20 kHz trigger rate containing 10 kHz central collisions as the
data rates are far lower than any limitation as shown below.

The non-uniform distribution of beam intensity strongly affects the fraction of interactions
that can be recorded. Hence, a good micro-structure of the beam is essential to record a
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Figure 8.4.: The start detector in combination with the CTS provides a measurement of the
fluctuations of beam intensity with high granularity. Here, the number of hits
in the start detector is shown with a bin size of 10µs measured in the middle of
a spill. The different colors represent the four channels of the inner part of the
detector.

Figure 8.5.: The dead-times of all sub-system at a trigger rate of 10 kHz.
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Beam Intensity Trigger [1000/s] Ratio
(particles / s) offered accepted

0.5×106 2.5 1.75 0.70
0.9×106 5 3 0.60
2.0×106 13 7.5 0.49

Table 8.6.: The ratio of generated trigger signals over accepted events varies depending on
the beam intensity.

decent number of events without increasing the load on detectors too much.

Even though the average dead time of the data acquisition system was less than 40%, the
data acquisition system was able to record only less than 50% of triggered events provided
at high beam intensity. Naturally, this ratio gets worse when operating at higher interaction
rates as shown in table 8.6. A rough estimate shows that in order to reach the proposed
event rate of 10 kHz for central events, the beam intensity has to be increased by a factor
3 for two reasons: First, the reduced ration of accepted triggers has to be accounted for.
Second, the trigger setting used during the August 2011 test experiment corresponds to a
lower multiplicity than proposed and hence to a bigger number of triggers generated.

The different channel occupancy of front-end boards depends on the position on the detec-
tor as described above. The strongest deviations were expected for MDC. The actual values
are shown in figure 8.6. The boards connected to long sense wires and those located near the
beam axis show a pronounced amount of data with rates about two times higher than the av-
erage. As is visible in figure 8.3, the fluctuations are stronger in MDC plane I and not evenly
distributed. The reason are lower thresholds and spike rejection settings of the front-ends.
Nevertheless, the fluctuations are covered by the estimations done in section 2.2.1.

Data Rates and Event Sizes

The data rates of all sub-systems were estimated by simulation in table 2.3. In table 8.7 this
estimation is compared to the actual rates measured during the August 2011 experimental run.
For most systems, the numbers agree quite well. The much lower data rate from the RICH
detector can be attributed to the lower noise contribution of the new read-out electronics.

In total, the measured data rate was slightly lower than the expected data rate. On the
other hand, one has to take the different event selection into account. In simulation, a high
multiplicity of 100 or more particles was selected while the actual experiment used a trigger
on 60 particles in the time-of-flight system and also added low-multiplicity events. From the
measured rates it can be concluded, that the actual data rates are significantly higher than the
ones expected from simulation. Anyhow, the impact on the data acquisition system is small
since all data paths are fast enough as shown in table 8.5.
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Figure 8.6.: The amount of data sent by each front-end of the MDC system varies depending
on the position of the front-end in the detector. Here, two chambers of MDC
plane 3 are shown.

Summary

The slow-control system was able to deliver all information needed for a detailed analysis
of the system status. The event and data rates of 15 kHz and 330 MByte/s, respectively, are
very good and the bandwidth margins allow for further increase. The event size was slightly
bigger than estimated due to the contribution of noise, but still well within the limits the
system can handle. The data reduction in the front-end systems was able to reduce data rates
by up to 10%, zero-suppression not taken into account. The transmission errors seen during
earlier runs were all corrected successfully. In conclusion, in the August 2011 run the data
acquisition system showed very good performance values.
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System kB/evt (Simulation, kB/evt (Aug. 2011,
25% most central) 80% mult. 60 + 20% mult. 15)

MDC 19.3 Sum: 18
MDC I: 7.2
MDC II: 4.8
MDC III: 3
MDC IV: 3

RICH 1.75 0.65
TOF 0.65 0.9
RPC 2.4 2.4

Shower 2.1 1.8
Others 0.8 0.85
Total 27 kB/evt 24.6 kB/evt

Table 8.7.: The estimated data rates for all sub-systems as given in table 2.3, including data
headers, compared to the actual values measured during the August 2011 exper-
imental run. The MDC data rate has been extrapolated to a full setup with 24
chambers.
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9. Conclusions, Synergies and Possible
Improvements

In the experimental runs of the HADES experiment since 2002 it became clear that the origi-
nal DAQ setup is not sufficient to operate in an experiment with a heavy ion beam. Hence, the
data acquisition system of the HADES spectrometer was upgraded during the last years. In
this scope, almost all digital front-end electronics and the complete data transport chain were
exchanged. Since 2010 several commissioning and test experiments of the whole system
were conducted and showed a good overall system performance.

The data transport in the inner data acquisition system is handled by a custom network
protocol, TrbNet. It was designed as a versatile protocol that can be adapted to all kind
of different hardware platforms. Extension to new hardware components is easily possible.
The inherent status reporting features allow an efficient reporting of possible errors in the
systems. Besides a rough overview of the status of the detector, the user interface features
also detailed information about all front-ends. The control interface allows the operator to
access all front-ends and introduce reconfigurations on-the-fly.

The new electronics are not only capable of higher data and event rates but also have
several other positive effects on data quality. The electromagnetic noise produced by the
read-out electronics in the sensitive front-ends was reduced so that signal detecting thresholds
could be reduced. Especially, now data acquisition and data transport in MDC are now run
in parallel while the old system was operated in an interleaved mode due to generated noise.

In August 2011 a four-day experimental run took place to comission the full system, in-
cluding analysis software, for heavy-ion experiments. In summary, all measured performance
values agree with the expected and required numbers. The total data rate is higher than ex-
pected but well within the limits of the network capabilities due to the contribution of noise
signals that can not be cut due to negative effects on data quality. Extrapolating all data to
higher trigger rates, the DAQ system can be operated at trigger rates of at least 25 kHz even
with a big percentage of high multiplicity events included.
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9.1. Synergies: Employment in Other Experiments

The hardware and network protocol of the HADES DAQ system and hardware, especially
the Trbv2, is also employed in several other experiments. E.g. at LIP32 in Coimbra, Portugal
an Positron-Emission-Tomography (PET) scanner for small animals is being developed [67].

The TrbNet protocol will also be used for the read-out of the prototype for the CBM
Micro-Vertex-Detector (MVD) [68]. Even though this detector uses a free running read-out
system compared to the triggered system of HADES, TrbNet can be employed with small
modifications. The detector consists of about 60 CMOS Pixel sensors (Monolithic Active
Pixel Sensors / MAPS [69]) with one million pixels, an area of 4 cm2 and a frame rate of
30 kHz each. These sensors will be read out by an array of FPGA-based read-out controllers
that apply a first level of data analysis and reduction. The data is further transported to
servers based on one of the two technologies used in the HADES setup (Gigabit Ethernet or
PCI-Express). All front-ends are run synchronously controlled from a central arbiter which
replaces the trigger system of HADES.

The arbiter sends requests for each frame recorded by the sensors. The read-out controllers
check, process and store the data until a read-out request is received. The reply to each frame-
request is used to transport information about the current status of the sensors and buffer fill
levels to the arbiter which can start the appropriate actions in case of a problem.

The synchronous read-out of all sensors can be achieved by running all sensors with a cen-
trally distributed clock signal. Here, either the clock recovered from the optical data stream
or an independently distributed clock signal can be used. The additional complexity intro-
duced is outweighed by numerous advantages. First, the recording time of each individual
pixel is known precisely and can be used to improve all high-level trigger and tracking algo-
rithms. Moreover, the central arbitrated operation allows for efficient error handling, e.g. if
data from one sensor is corrupted, the whole frame can be skipped if desired.

Lastly, this operation concept for pixel sensors is closely related to a triggered read-out
system. Thus, most components developed for the HADES DAQ system can be reused for
the CBM-MVD read-out.

9.2. Further Developments

The current DAQ network implementation increased the total bandwidth and rate capability
of the DAQ system substantially. Nonetheless, further improvements can be done. In partic-
ular, the event rate for light ion experiments such as proton-proton collisions is still limited
by the DAQ system to roughly 50 kHz while the detectors can handle even higher rates in
smaller collision systems.

The main source of additional dead-time is the latency of the busy-release information.

32LIP - Laboratório de Instrumentação e Física Experimental de Partículas
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This can be overcome by introducing a modification to the trigger-busy-release architecture
as described in section 9.2.1. Higher data-rates and more error correction features can be
achieved by modifications of the low-level network protocol. The outline of a proposed
second version of TrbNet is given in section 9.2.2.

Last, the time measurement of the detector can be increased by exchanging the TDCs to
ones with a better resolution. A new general-purpose read-out platform that is capable of
time measurements with a resolution of better than 15 ps is currently under development.
The TRB version 3 is briefly shown in section 9.2.3.

9.2.1. Reduced Dead Times: Credits-based Trigger

In the current trigger system implementation a lot of time is spent after read-out is finished
to transport this information to the CTS. A possibility is to send the busy-release information
already before the actual read-out cycle is finished. This is only feasible for systems with a
fixed read-out time and can not be implemented in sub-systems with varying times such as
MDC. Unfortunately, this is also the system that has the longest read-out times by default.

A solution is a credits-based trigger system. This means that not every single trigger has to
be released, but a set of triggers is sent without a busy release signal. After a given number of
triggers, the CTS has to wait for a busy release to prevent buffer overflows in the front-ends.
This scheme can be implemented as long as the read-out time of the slowest subsystem can
be predicted with a precision high enough. If the estimate is too high, dead-time is increased.
If the estimate is too low, the next trigger is sent before all front-ends are able to take the next
block of data. Hence, the data from these systems will be lost. In fact, this is acceptable if
the number of events with missing data is sufficiently low and the error is reported within the
data.

The proposed scheme allows the CTS to send a set of reference time signals corresponding
to several events without sending a LVL1 trigger. To distinguish this special trigger sequence
from errors on the reference time signal, a special trigger type is used and the number of sent
triggers is announced by the CTS. Additionally, the reference time signal can be modified
to allow the front-ends to detect the altered trigger sequence. Two different lengths of the
timing signal, e.g. 100 ns and 150 ns, are sufficient.

The number of consecutive reference time signals has to be limited due to buffer size
requirements in the front-ends. The front-ends have to provide the buffer space to store all
events of a sequence because read-out can not take place before the final LVL1 trigger has
been sent. Here, the buffer size has to be calculated based on average sized events. Maximum
sized events as are used to determine buffer-full conditions in the current system are usually
caused by calibration triggers. By definition, these triggers can not be sent in a sequence and
hence, the front-ends are able to generate a busy after each of these.

Based on usual event and buffer sizes, a sequence of up to 10 events is reasonable. As-
suming a typical dead-time of 16 µs per event as calculated in 8.2, 10 events can be recorded
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within 163 µs compared to 190 µs in the conservative approach. In light collision systems,
a reduction from 130 µs to 100 µs can be achieved. Taking the planned further HADES up-
grade with a calorimeter and removal of the Shower sub-system into account, the dead-time
for small-sized events will not be limited by the fixed front-end timing any more. Hence, an
estimated reduction from 90 µs to 53 µs dead-time is possible.

If the MDC front-end electronics is also replaced as noted in 9.2.3, the read-out time can
be further reduced to approximately 30 µscorresponding to an event rate of 300 kHz.

The event rate gained by a credits-based trigger system lies between 15% and 40% depend-
ing on the experimental setup while keeping data loss due to wrong read-out time estimations
at a minimum. With new MDC front-end electronics the total read-out time can be calculated
precisely for all sub-systems and all data loss avoided and the total event rate can be in-
creased by a factor of three. From the August 2011 experimental run with 55% accepted
high-multiplicity triggers it can be concluded that the number of recorded events could be
increased by 80% without changing the beam intensity.

9.2.2. Increased Bandwidth and Control Features: TrbNet v2

The current TrbNet implementation bases on a fixed packet size and no further mechanisms
to guarantee that the packet boundary assumed by the receiver is always synchronized to the
actual packet position. Moreover, it can not be easily detected if one word is corrupted or
lost during transmission. As a result, a corrupted packet is likely to corrupt all data transfer
between two network nodes.

The FOT data link already includes a complete error detection and correction mechanism
based on a set of link control characters. Unfortunately, this scheme can not be directly
adapted for all 2 GBit/s links due to the limited capabilities of the TLK 2501 transceiver used
on the TRBv2 board. In fact, this chip, which was used in a major part of the DAQ system
during the first construction phase, was also the reason for the current TrbNet implementa-
tion.

A new TDC platform is already under development (see section 9.2.3) and can replace the
TRBv2 in the future so that this limitation can be overcome.

Main Features

The main features of the planned TrbNet version 2 protocol can be summarized as follows:

• Flexible packet size reduces the overhead during data transmission while keeping low
latency trigger messages.

• Inherent data correction algorithms on all network links based on the current FOT link
implementation.
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• Network links can include a short handshake procedure to test a connection when it is
established. During start-up, both link partners send a given pattern of control char-
acters so that link start-up can be done faster and more reliably than in the current
implementation.

• Increased data bandwidth at data rates of 2.5 GBit/s. The links should be able to
operate at a throttled speed of approximately 2 GBit/s by adding a fixed number of idle
words to adapt to slower nodes. A higher link speed may be selected if all hardware
platforms are able to support it.

• Internal data busses can be resized to 32 Bit words without increasing the required
resources substantially. This increases the internal bandwidth of nodes to 4 GBit/s and
matches the increased link data rate. Slower nodes with 16 Bit word size might be
supported if necessary.

• The internal logic can be further optimized if the header of each packet is separated
from data. In all layers above the multiplexer, the header does not contain any infor-
mation despite the 3 Bit sized packet type. A 32 + 3 Bit internal data bus can be used
to transport this information in parallel to data words. Between the media interface and
the multiplexer, a 32 + 6 Bit bus is required.

• Internal data transport can be simplified by using an optimized handshake implemen-
tation between implementation blocks.

• The transmission protocol can foresee short messages which do not require a reply
from the nodes. The small message size guarantees that each message can be trans-
ported in one block of data and the channels are not blocked since no replies have to
be sent. In combination, this avoids the possibility of collisions in multiple requester
systems.

9.2.3. New Electronics

The currently used TRBv2 has already been used in various experiments but also showed
some drawbacks: The embedded Linux platform has a quite low performance that is not
sufficient for data acquisition at high rates. The DSP adds much complexity to the board
layout but never has been fully employed in any read-out or data processing scheme. The
TDC used on the board are not able to handle rates of above 4 MHz per channel. Most
components on the board are already out-dated or not available any more.

The embedded Linux system usually only serves as a slow-control interface to program
FPGA and TDC. In the meantime, these tasks can also be fulfilled by the DAQ network or by
a direct implementation of Gigabit Ethernet within the FPGA. Moreover, powerful FPGA-
based TDC have been developed at GSI [70].
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Figure 9.1.: The Trigger and Read-out Board version 3 (TRBv3) is a newly developed plat-
form for data acquisition. Four FPGAs contain the data acquisition logic such as
high-precision TDC circuits or front-end control features. Additional input elec-
tronics can be added to small AddOn boards. The fifth, central FPGA houses the
interconnection to other electronics.

The result is a completely revised TRB version 3 which is currently (June 2011) in pro-
duction. A schematic view is given in figure 9.1. Four FPGAs contain all front-end control
logic needed, including up to 40 TDC channels. Each is supplied with a 200-pin Add-On
connector that can be used to attach additional devices to the FPGA. For example, an exter-
nal ADC board can be connected in order to measure both precise timing and amplitude of an
incoming signal. One central FPGA serves as read-out hub. For data transmission it is sup-
plied with 8 SFP transceivers that can be operated with various network protocols, including
TrbNet and Gigabit Ethernet. The GbE implementation is bi-directional to transport event
data as well as allow slow-control accesses to be made from an external computer.

Based on the experience to be collected with the TRB3, also new front-end electronics for
the MDC system seems feasible. FPGA based TDC instead of the currently used custom
ASIC-TDCs have several advantages: A much lower and less varying power consumption
helps reducing the noise environment, the TDC have more configuration options, read-out
can be accomplished in about 95% less time (10 ns instead of 200 ns per word), and finally
dead-times are reduced due to multi-hit capabilities.
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10. Kurzfassung

Ein zentraler Aspekt der modernen Kern- und Teilchenphysik ist die Erforschung des Phasen-
diagramms stark wechselwirkender Materie (Abbildung 1.1). Neben normaler Kernmaterie
wird ein Phasenübergang in das sogenannte Quark-Gluon-Plasma bei hohen Temperaturen
erwartet. Erste Anzeichen für einen solchen Phasenübergang wurden bereits experimentell
beobachtet. Bei höheren Netto-Baryonendichten werden weitere exotische Zustände vorher-
gesagt [2, 3]. Die einzige Möglichkeit, Materie bei hohen Temperaturen und Dichten im La-
bor herzustellen und zu untersuchen, stellen Experimente an Teilchenbeschleunigern dar, bei
denen Atomkerne mit relativistischen Geschwindigkeiten zur Kollision gebracht werden. Bei
ultrarelativistischen Geschwindigkeiten werden Zustände, wie sie kurz nach der Entstehung
des Universums existiert haben, für kurze Zeit (weniger als 10−23s) experimentell erschließ-
bar.

Die hierbei entstehenden Teilchen können beispielsweise mithilfe eines Spektrometers
nachgewiesen und charakterisiert werden. Ein typisches Spektrometer kombiniert verschie-
dene Detektoren und ein Magnetfeld und erlaubt es, Geschwindigkeit, Impuls, Energie, La-
dung und Trajektorie jedes Teilchens präzise zu vermessen. In vielen Experimenten ist eine
bestimmte Teilchenart von besonderem Interesse. Oft entstehen diese jedoch nur äußerst sel-
ten, sodass für eine spätere Analyse eine große Menge an Ereignissen aufgezeichnet werden
muss. Aus diesen Gründen ist das Design des Datenaufnahmesystems (DAQ) für solche Ex-
perimente eine besondere Herausforderung.

Ein Detektorsystem, das speziell auf die Analyse von Elektron-Positron-Paaren bei Strahl-
energien von 1 bis 3 GeV pro Nukleon ausgerichtet ist, ist HADES (High Acceptance Di-
Electron Spectrometer, siehe Abbildung 10.1). Es befindet sich seit 2002 am GSI Helmholtz-
zentrum für Schwerionenforschung in Darmstadt. Das Spektrometer ist aus mehreren Detek-
torsystemen aufgebaut: Die Spurverfolgung der Teilchen wird durch vier Ebenen von Drift-
kammern (MDC) ermöglicht. Gleichzeitig erfolgt die Impulsbestimmung durch die Messung
der Krümmung der Teilchenspuren in einem Magnetfeld. Die Flugzeit jedes Teilchens wird
durch eine Flugzeitwand (TOF) und Resistive Plate Chambers (RPC) gemessen. Die Identifi-
kation von Elektronen wird unterstützt durch einen Cherenkov-Detektor (RICH) sowie einen
Pre-Shower-Detektor. Teilchen und Kernfragmente die das Target unter kleinen Winkeln ver-
lassen, werden mit Hilfe eines Hodoskops nachgewiesen. Zwei Diamant-Detektoren (Start
und Veto) registrieren alle Strahlteilchen vor beziehungsweise hinter dem Target. So kann
der Zeitpunkt einer Kollision genau bestimmt und die Aufzeichnung von Daten, bei denen
keine Reaktion im Target stattgefunden hat, unterdrückt werden.
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Abbildung 10.1.: Ein Querschnitt (Seitenansicht) durch das HADES Detektorsystem. Zur
Vereinfachung sind nur zwei der sechs Sektoren gezeigt.

Auf Grund der Anforderungen geplanter Experimente mit Schwerionenstrahlen wurde im
Jahr 2007 begonnen, das ursprüngliche Datenaufnahmesystem komplett zu ersetzen, um hö-
here Daten- und Ereignisraten zu ermöglichen. Hier sollen Raten von 20 kHz und Datenvolu-
mina von 400 MByte/s erreicht werden, was einer Steigerung der Kapazität gegenüber dem
alten System um etwa einen Faktor 30 entspricht. Für Experimente mit leichten Kernen soll
die Ereignisrate bis zu 50 kHz betragen.

Das neu entworfene HADES DAQ-System basiert auf mit programmierbaren Logikbau-
steinen (Field Programmable Gate Array, FPGA) ausgestatteten Modulen. Diese bestehen
aus den gleichen Grundbausteinen, die jeweils um detektorspezifische Bauteile ergänzt wer-
den. Insgesamt sind über 500 solcher Module über das gesamte Detektorsystem verteilt. Die
Kommunikation zwischen diesen Modulen erfolgt über optische Glasfaserverbindungen. Ge-
genüber herkömmlichen elektrischen Signalen hat dies mehrere Vorteile: die benötigten Ka-
bel sind kleiner und sind unempfindlich gegenüber elektromagnetischen Störungen.

Das System wird durch ein zentrales Modul (Central Trigger System, CTS) gesteuert. Es
empfängt analoge Informationen von verschiedenen Sub-Detektoren, auf deren Basis eine
Entscheidung getroffen wird, ob ein Ereignis, das aufgezeichnet werden soll, stattgefunden
hat. Diese wird über ein dediziertes Referenzzeitsignal an alle Submodule weitergeleitet, wel-
che daraufhin die Detektordaten digitalisieren und zwischenspeichern. Das CTS versendet
zur gleichen Zeit ein Datenpaket über das optische Netzwerk in dem genauere Informationen
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Abbildung 10.2.: Eine Ansicht des kompletten HADES DAQ Netzwerkes: Netzwerkknoten
(Hubs) sind in violett dargestellt, alle Auslesemodule in grün, zusätzliche
Frontend-Module in grau. Die Zahl der jeweils vorhandenen Module ist
durch kleine Zahlen gekennzeichnet. Alle Module benutzen das gleiche
Netzwerkprotokoll und ähnliche Bausteine. Untereinander sind die Module
durch ein dediziertes Netzwerkprotokoll (TrbNet) verbunden während die
Datenübertragung zu verschiedenen Servern über Gigabit Ethernet erfolgt.

zum Ereignis und die Verarbeitung der Daten enthalten sind. Während dieses Vorgangs ist
das Versenden weiterer Trigger blockiert bis alle Module die Aufnahme der Daten des Ereig-
nisses bestätigt und somit ihre Bereitschaft weitere Daten aufzunehmen signalisiert haben.

In einem zweiten Schritt werden die zwischengespeicherten Daten über das optische Netz-
werk ausgelesen. In den Netwerkknoten (Hubs) werden die individuellen Datenpakete zu
größeren Datenströmen zusammengefasst, so dass aus über 500 einzelnen Paketen 30 Daten-
blöcke entstehen. Diese können dann an ein Rechnercluster (“Event Builder”) weitergeleitet
werden, wo sie zu kompletten Ereignissen kombiniert und gespeichert werden. Die Analyse
der Daten läuft dann unabhängig von der Datenaufnahme zu einem späteren Zeitpunkt ab.
Die Struktur des kompletten Netzwerks ist in Abbildung 10.2 dargestellt.

Das Netzwerkprotokoll, das zum Datenaustausch verwendet wird, muss neben dem Trans-
port von großen Datenmengen einige besondere Anforderungen erfüllen. Auf Grund des
kontinuierlichen Datenaustauschs zwischen Triggersystem und Detektormodulen für jedes
aufgezeichnete Ereignis muss die Latenz äußerst gering sein, das Versenden der Triggerin-
formation zu allen Modulen darf nicht mehr als 7 µs in Anspruch nehmen; gleiches gilt für
den Rücktransport der Bestätigung zum Triggersystem. Wegen räumlicher Beschränkungen
im Inneren des Detektors muss zudem jedwede Kommunikation über dieselbe physikali-
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Abbildung 10.3.: Das Auslesemodul für die HADES Driftkammern. Die Größe des Boards
ist auf 4 cm mal 5 cm beschränkt. Neben einem FPGA und optischen Tran-
sceiver enthält es Spannungsregler, 2 Flash Speicher, Signalkonverter und
einen ADC zur Spannungsüberwachung.

sche Verbindung stattfinden, sodass aufgenommene Daten, Triggerinformationen sowie alle
Kontroll- und Statusmeldungen miteinander kombiniert werden müssen. Für Netzwerkkno-
ten muss es auf einfache Art möglich sein, mehrere Datenströme zu einem einzigen zusam-
menzufassen. Auf diesen Anforderungen basierend wurde ein dediziertes Protokoll, TrbNet,
entwickelt. Für die zeitunkritische Datenübertragung zwischen Netzwerkknoten und Servern
kann hingegen ein herkömmliches Netzwerk verwendet werden. Hier kommt eine Ethernet-
Infrastruktur mit 1 bis 10 GBit/s zum Einsatz.

Um die verschiedenen Anforderungen der Datentypen zu berücksichtigen, verfügt das
Netzwerkprotokoll über drei mit unterschiedlichen Prioritäten versehene virtuelle Kanäle.
So ist es möglich, die Daten in jedem Netzwerkknoten voneinander getrennt zu verarbeiten
und nur für die Übertragung auf den optischen Links in einen gemeinsamen Datenstrom zu
bündeln. Die Abhängigkeiten der Datenströme untereinander wird so minimiert. Da die zeit-
kritischen Triggerinformationen den Kanal höchster Priorität benutzen, können sie praktisch
verzögerungsfrei transportiert werden, auch wenn parallel erhöhte Datenmengen transpor-
tiert werden. Hierzu werden alle Daten in kleine Pakete von nur 80 Byte Größe aufgeteilt,
wodurch ein Kanalwechsel nach spätestens 50 ns (bei 2 GByte/s Übertragungsgeschwindig-
keit) möglich ist.

Die Ausleseelektronik für die HADES Driftkammern (MDC) stellt zusätzliche Herausfor-
derungen auf Grund des stark beschränkten Platzangebots und der Nähe einzelner Module
zu Strahl und Detektor. Es musste ein sehr kompaktes Modul von nur 4 cm auf 5 cm Größe
entworfen werden (siehe Abbildung 10.3). Da die Analogelektronik des alten Auslesesys-
tems beibehalten werden sollte, musste das Modul kompatibel zur vorhandenen Elektronik
ausgelegt werden. Da die Module zudem im zusammengebauten Zustand des Detektors nicht
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mehr zugänglich sind, waren zusätzliche Sicherheitsvorkehrungen zu treffen: Damit bei ei-
nem Update der Konfiguration keine Fehler entstehen können, verfügt das Modul über zwei
getrennte Speicher, von denen nur einer neu beschrieben werden kann. Wegen ihrer hohen
Empfindlichkeit benötigt die Analogelektronik präzise Versorgungsspannungen, die auf dem
Modul geregelt werden können.

Die Nähe zum Detektor und anderen elektromagnetischen Störquellen verursacht zudem
Übertragungsfehler in den optischen Transceivern. Um diese zu korrigieren, werden alle Da-
ten vor der Übertragung mit Prüfsummen versehen, die auf Empfängerseite überprüft wer-
den. Im Falle eines Fehlers werden die Daten verworfen und das Paket erneut vom Sender
angefordert. Die Strahlung, die besonders im zentralen Bereich des Detektors auftritt, sorgt
für zusätzliche Fehler, da sie die Konfiguration der Logikbausteine verändern kann. Das Sys-
tem muss also bei einer Fehlfunktion eines Frontend-Moduls dies erkennen und das Modul
selbständig aus dem System entfernen, damit die Datenaufnahme des restlichen Systems wei-
terlaufen kann, bis das fehlerhafte Modul wieder einsatzbereit ist. Diese Funktion übernimmt
der dem Modul nächstgelegene Netzwerk-Hub.

Ein weiterer wichtiger Aspekt der Erneuerung des Auslesesystems war die Integration zu-
sätzlicher Kontroll- und Überwachungsfunktionen für alle Detektorsysteme. Diese wurden
zunächst dadurch erleichtert, dass nun alle Systeme über ein gemeinsames Netzwerk mit-
einander verbunden sind und somit auch dieselben Programme verwendet werden können.
Zudem ist es nun möglich, jedes Frontend-Modul individuell anzusprechen und seinen Zu-
stand abzufragen. Jedes Modul verfügt über einen Satz an global standardisierten Registern,
die eine Auswertung der Informationen vereinfachen. Daneben hat jedes System zusätzliche
Funktionen implementiert, um beispielsweise Parameter für die Detektorelektronik zu setzen
oder über verschiedene Busprotokolle mit anderen Bausteinen zu kommunizieren. Auf Soft-
wareseite existiert eine Reihe von Werkzeugen, mit denen der Zugriff auf diese Funktionen
vereinfacht wird.

Das komplette DAQ-System wurde während mehrerer Testexperimente in den Jahren 2010
und 2011 in Betrieb genommen und erfolgreich validiert. Die Latenzzeiten der Übertragung
von Triggerinformationen liegt mit maximal 5 µs innerhalb der Spezifikationen. In einem
Leistungstest mit künstlich erzeugten Daten erreichte das System Ereignisraten von bis zu
68 kHz und Datenraten von über 800 MByte/s. Diese Werte liegen weit über den Anforde-
rungen während eines Experiments. Im August 2011, während des Gold-Testexperiments bei
1.25 AGeV Strahlenergie und typischen Strahlintensitäten von 1,4 · 106 Ionen pro Sekunde,
konnten Datenraten von über 300 MByte/s und Ereignisraten von 15 kHz erreicht werden.
Diese Werte liegen leicht unter den geplanten Raten, obwohl die Datenaufnahme mit einer
Totzeit von nur etwa 15% nicht saturiert war. Zum einen konnte auf Grund der Last in den
Detektoren die Strahlintensität nicht weiter erhöht werden, zum anderen konnten nur etwa
50% aller Ereignisse aufgezeichnet werden. Der Grund hierfür ist die Mikro-Struktur des Io-
nenstrahls mit Intensitätsspitzen auf einer Skala von bis zu 1 ms. Der Prozess der Extraktion
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aus dem Beschleuniger erlaubt es nicht, einen kontinuierlichen Strahl zu erzeugen; statt-
dessen entstehen abwechselnd Phasen hoher und sehr niedriger Intensität. Hierdurch treten
Ereignisse vermehrt innerhalb kurzer Zeitabstände auf und können aufgrund der Totzeit von
etwa 30 µs pro Ereignis nicht verarbeitet werden. Die erwartete Übertragungsfehlerrate von
durchschnittlich einem Fehler pro Sekunde und die Ausfallrate der Frontends von etwa ei-
nem Ausfall pro Stunde konnten sämtlich durch die Fehlererkennungs- und Fehlerkorrektur-
Mechanismen abgefangen werden, die auf Grund der Erfahrungen in früheren Tests imple-
mentiert wurden.

Von der für HADES entwickelten Elektronik und dem universellen und performanten Aus-
lesenetzwerk profitieren inzwischen auch zahlreiche weitere Experimente bei FAIR und an-
deren Forschungseinrichtungen. Das zentrale Ausleseboard für alle zeitmessenden Detekto-
ren (TRB2) wird ist vielfältig einsetzbar und wird unter anderem am LIP in Coimbra (Portu-
gal) zur Auslese eines PET-Scanners eingesetzt. Weitere Module sind für Testaufbauten und
Detektortests im Einsatz. Der in Frankfurt entwickelte Micro-Vertex-Detektor für das CBM-
Experiment bei FAIR benutzt beispielsweise die gleiche Netzwerk- und Softwareinfrastruk-
tur wie HADES. Aus den Erfahrungen mit dem TRB2 wurde ein Nachfolgemodul gebaut, das
eine höhere Zeitauflösung und höhere Flexibilität bringt. Im Gegensatz zu dedizierten Bau-
steinen zur Zeitmessung wird hier ein Konzept zur Zeitmessung direkt in FPGAs verwendet.
Weiterhin kann das Board als universelle Logik-Platform für beliebige andere Funktionen
dienen. Die Erweiterbarkeit um notwendige Zusatzfunktionen ist durch Aufsteckmodule ge-
währleistet.
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A. TrbNet Definitions

All boards within the DAQ network are accessible individually and in groups depending on
their type. These accesses are done using network addresses that also reflect the position of
a front-end within the detector. The full set of addresses is described in section A.1.

The TrbNet nodes have a defined application interface and are configurable by various
settings. The application interface to the network in endpoints consists of three parts: The
trigger interface, the event data interface and the slow control interface. These interfaces and
their configuration options are described in sections A.2, A.3 and A.4, respectively. Inside
network hubs, the streaming interface is used to receive event data from the network and
forward it to the servers. This interface is shown in section A.5.

A.1. Network Addresses

All network nodes are individually addressable by a 16 Bit network address. This address
is assigned during the start-up process as described in section 3.3.1. Table A.2 shows the
addresses assigned to all network nodes while table A.1 gives an overview of all available
broadcast addresses that are used to address a given sub-set of nodes at once. All broadcasts
are located in the address range between 0xFE00 and 0xFFFF.
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Address Broadcast to... Number of Nodes

0xFFFF All nodes (global broadcast) approx. 550
0xFFFE Network hubs 90
0xFFFD MDC front-ends (OEP) 372
0xFFFB RICH front-ends (ADCM) 30
0xFFF7 Shower front-ends (Shower-AddOn) 12
0xFFEF TOF front-ends (TRB) 7
0xFFDF RPC front-ends (TRB) 24
0xFF7F Nodes with Ethernet Bridges 25
0xFE11 MDC-Hub Nodes with FOT links 48
0xFE15 MDC-Hub central data combining hubs 12
0xFE21 Shower Front-end read-out handler for ADC 1 – 6 6
0xFE22 Shower Front-end read-out handler for ADC 7 – 12 6
0xFE23 Shower Front-end central hub FPGA 6
0xFE31 Hub AddOn FPGA 1 (with 12 optical links) 11
0xFE33 Hub AddOn FPGA2 (with GbE interface) 11

Table A.1.: The network addressing scheme foresees a set of broadcast addresses to access
all or a sub-set of network nodes at once.
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A.1. Network Addresses

Address Broadcast to...

0x0002 CTS, read-out of event data
0x0003 CTS, configuration interface

0x2000 – 0x235F MDC front-ends (OEP). 2nd digit: MDC plane (0 – 3). 3rd digit:
sector (0 – 5). 4th digit: front-end board number.

0x3000 – 0x3055 RICH front-ends. 3rd digit: sector (0 – 5). 4th digit: front-end board
number (0–5).

0x3200 – 0x3252 Shower front-ends. 3rd digit: sector (0 – 5). 4th digit: FPGA number
(0 – 2).

0x4000 Start / Veto detector
0x4400 – 0x4420 Forward Wall front-ends. 3rd digit: front-end board number (0 – 2).
0x4800 – 0x4853 RPC front-ends. 3rd digit: sector (0 – 5). 4th digit: front-end board

number (0 – 3).
0x4C00 – 0x4C50 TOF front-ends. 3rd digit: sector (0 – 5).
0x1000 – 0x1154 MDC-Hub boards. 2nd digit: inner (0) or outer (1) MDC planes. 3rd

digit: sector (0 – 5). 4th digit: FPGA number (0 – 3).
0x8000 – 0x8001 Central Network Hub. 4th digit: FPGA number (0 – 1)
0x8100 – 0x8111 MDC Hubs. 3rd digit: inner (0) or outer (1) MDC planes. 4th digit:

FPGA number
0x8300 – 0x8321 RICH Hubs. 3rd digit: hub number (0 – 2). 4th digit: FPGA number.
0x8400 – 0x8411 RPC Hubs. 3rd digit: hub number (0 – 1). 4th digit: FPGA number.
0x8500 – 0x8801 Other network hubs: 2nd digit: sub-system: 0x5 Shower, 0x6 TOF,

0x7 Forward Wall, 0x8 Start/Veto and CTS. 4th digit: FPGA number.

Table A.2.: The network addresses are assigned in a way that directly identifies the sub-
system and the physical position within the detector system.
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Port Width Description

LVL1VALIDTIMINGTRGOUT 1 The LVL1 Handler sets this signal for one
clock cycle after a valid reference time signal
has been identified

LVL1VALIDNOTIMINGTRGOUT 1 The LVL1 Handler sets this signal for one
clock cycle when a valid RTL trigger has been
received

LVL1INVALIDTRGOUT 1 This signal is set for one clock cycle if a LVL1
trigger is received that has not been preceded
by a reference time signal

Table A.3.: Part 1 of the Trigger Interface: Trigger Validation Ports. Depending on the trigger
type, either a valid timing trigger or a valid RTL trigger is announced. In case of
an error, an invalid trigger may be reported as described in section 4.4.

A.2. Trigger Interface

The Trigger Interface is part of the connection between the read-out logic and the network.
Here, trigger information is offered to the read-out logic and the busy release is accepted.
Table A.3 shows the ports for trigger validation and handshakes. Table A.4 shows the ports
for trigger information and table A.5 shows the ports for error information.

All trigger information ports (see table A.4) are valid as long as LVL1TRGDATAVALIDOUT
is set. This signal is high after the LVL1 trigger has been received until the busy release has
been sent.

The behavior of the LVL1 Trigger Handler is described in section 4.4. Here, 8 different
input scenarios are described. The corresponding timing diagrams are shown below.
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A.2. Trigger Interface

Port Width Description

LVL1TRGDATAVALIDOUT 1 The trigger type, number, information and code
is valid. This signal rises after the LVL1 Trigger
has been received and goes low after the busy
release has been sent

LVL1TRGTYPEOUT 4 Trigger Type. See table 4.1
LVL1TRGNUMBEROUT 16 Running Trigger Number
LVL1TRGCODEOUT 8 Random Trigger Code
LVL1TRGINFORMATIONOUT 24 Trigger Information. See table 4.2
LVL1INTTRGNUMBEROUT 16 Internally generated trigger number. The value

is valid when the trigger logic is not busy and
shows the next expcted trigger number.

Table A.4.: Part 2 of the Trigger Interface: Trigger Information. All ports are valid while
LVL1TRGDATAVALIDOUT is set.

Port Width Description

LVL1TRGMULTIPLETRGOUT 1 If a second valid reference time signal is
detected on the input, this bit is set.

LVL1TRGTIMEOUTDETECTEDOUT 1 The delay after the reference time signal
until the LVL1 trigger information is re-
ceived exceeded the maximal time limit

LVL1SPURIOUSTRGOUT 1 A reference time signal was detected but
the LVL1 trigger information announced a
RTL-trigger

LVL1MISSINGTMGTRGOUT 1 No reference time signal but a valid LVL1
trigger has been received

LVL1TRGSPIKEDETECTEDOUT 1 A short spike on the reference time input
has been received

LVL1LONGTRGOUT 1 The reference time signal was much longer
than expected.

Table A.5.: Part 3 of the Trigger Interface: Error Information. On these ports, all different
error conditions are reported. See section 4.4 for details. All bits are set when the
error condition is detected and are valid until the busy release has been sent.
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Figure A.1.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 1 (see
section 4.4).

Figure A.2.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 2 (see
section 4.4).
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A.2. Trigger Interface

Figure A.3.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 3 (see
section 4.4).

Figure A.4.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 4 (see
section 4.4).
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Figure A.5.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 5 (see
section 4.4).

Figure A.6.: Timing Diagram: Behavior of the LVL1 Trigger Handler. Input case 6 (see
section 4.4).
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A.3. Event Data Interface

A.3. Event Data Interface

The Event Data Interface is used to transport data between the fron-end logic and the TrbNet
endpoint logic as described in section 5.2. Figure A.7 shows a generic example of a transac-
tion on this interface. The interface consists of four signals which are described in table A.6.
The configuration of the interface regarding bus widths, buffer depths and general behavior
is shown in table A.7.

Figure A.7.: A transaction on the Event Data Interface. After the trigger, the front-end sends
a total of 7 data words before it finishes writing data. During writing of the
event, the buffer raises its almost-full flag indicating that the busy release will
be delayed until the fill-level is again below a critical mark.

Port Width Description

FEEDATAIN 32 Data input for raw event data
FEEDATAWRITEIN 1 Strobe signal to validate event data
FEEDATAFINISHEDIN 1 Strobe to signal the end of event data
FEEDATAALMOSTFULLOUT 1 Status of the data buffer. This signal is for infor-

mational purposes only. If the endpoint is config-
ured correctly it handles buffer full states automat-
ically

Table A.6.: The Event Data Interface is part of the connection between the read-out logic and
the network. Here, event data is transported to the endpoint after a valid trigger.
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Generic Type Description

TIMINGTRGRAW bool Configuration of the LVL1 handler, if set to CNO,
a synchronized strobe signal is expected as trig-
ger signal. Otherwise, the input should be a
100 ns long raw reference time signal

DATAINTERFACENUMBER int The number of independent data inputs to the
endpoint data handler

DATABUFFERDEPTH int The depth of one data buffer as calculated by
value = log2(number of words)
The supported values range from 9 to 14

DATABUFFERWIDTH int Width of the data port in bits. The maximum
width is 32 Bit

DATABUFFERFULLTHRESH int The full threshold for the buffer han-
dling. Depending on the setting of
TRGRELEASEAFTERDATA, the value must
be either one maximal frame size (if set to CYES)
or two maximal frame sizes (if set to CNO) below
the total size of the data buffer

TRGRELEASEAFTERDATA bool The default behavior (when set to CYES) is, that
the trigger busy release is sent to the CTS only
after the the data finished signal from each data
port has been received. If set to CNO, the busy
release is controlled by FEETRGRELEASEIN

HEADERBUFFERDEPTH int Depth of the buffer for event headers. Available
depths are 9 to 14, calculated in the same manner
as DATABUFFERDEPTH

HEADERBUFFERFULLTHRESH int The full threshold for the event header buffer.
This value should be set to a few events less than
the full buffer depth

Table A.7.: The Event Data Interface is part of the connection between the read-out logic and
the network. In the table, all available configuration options are shown.
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A.4. Slow-Control Interface

The slow control endpoint can be configured by a number of generic settings as shown in A.8.
The I/O ports not related to the internal data bus are given in table A.9.

All busses of the RegIO register interface are shown in timing diagrams A.8 and A.9.
These show all possible combinations of read or write requests and matching reactions of the
front-end logic. If the front-end logic does not respond within few clock cycles, a time-out
is generated and the slow-control request is completed with an error message. If a request
can not be fulfilled because the address does not correspond to any defined functionality, the
request is cancelled by a strobe on the “unknown address” signal. This can also be used e.g.
if the addressed register of a write access is read-only.

If a request is possible but can not be fulfilled at the time of the request, the “no more
data” signal is set. A read access may fail if a register without valid data or an empty Fifo is
addressed. Vice versa, a write access fails if the register is blocked, for example in case the
register is a control register for a logic block which is busy and can not accept new commands.

If a write access succeeds, the front-end logic performs the write and sets an acknowledge
signal. A read access is successfully ended by providing the requested data on the data port
and setting the “data valid” flag for one clock cycle.

The block access command is not visible on the interface. RegIO converts any block
access to a sequence of single read/write operations with properly adjusted addresses. This
is feasible since the data bus is faster than transmission of slow-control data via TrbNet by a
factor 5, i.e. each access can spend 5 clock cycles without slowing data transport.
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Figure A.8.: RegIO Data Bus - Possible read cycles

Figure A.9.: RegIO Data Bus - Possible write cycles
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Generic Type Description

ADDRESSMASK 15 – 0 A bit mask to be applied when checking the ad-
dress of a request. Can be used to have one
front-end accessible by several addresses. De-
fault 0xFFFF.

BROADCASTBITMASK 7 – 0 Bitmask to be applied on lower 8 bits of hexF-
Fxx broadcast addresses

BROADCASTSPECIALADDR 7 – 0 Lower 8 bits of hexFExx special broadcasts
REGIOINITADDRESS 15 – 0 Initial network address
REGIOINITENDPOINTID 31 – 0 Endpoint ID to distinguish several FPGA with

identical unique IDs
REGIOCOMPILETIME 31 – 0 Unix time stamp of compilation time of the de-

sign (register hex40)
REGIOCOMPILEVERSION 31 – 0 Value for board design register hex41
REGIOHARDWAREVERSION 31 – 0 Value for board information register hex42
REGIONUMSTATREGS int Log base 2 of number of user defined status reg-

isters
REGIONUMCTRLREGS int Log base 2 of number of user defined control

registers
REGIOINITCTRLREGS 511 – 0 Initial values of user defined control registers
REGIOUSE1WIRE int Select 1-wire interface: CNO: No 1-wire, end-

point ID is written manually. CYES: Normal 1-
wire interface. CMONITOR: 1-wire interface in
listen-only mode - a 1-wire master that issues
the commands exists in a different place

REGIOUSEVARENDPOINTID bool Endpoint ID is not given by generic but by a
variable input port

CLOCKFREQUENCY int Clock frequency in MHz. Used to adjust inter-
nal timers

Table A.8.: The slow control interface can be configured by a set of generic values.
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Port Width Description

REGIOCOMMONSTATREG 288 The common status registers
REGIOCOMMONCTRLREG 96 The common control registers
REGIOCOMMONSTATSTROBE 9 Read strobes for the common status registers
REGIOCOMMONCTRLSTROBE 3 Write strobes for the common control registers
REGIOSTATREG var. The user status registers
REGIOCTRLREG var. The user control registers
REGIOSTATSTROBE var. Read strobes for the user status registers
REGIOCTRLSTROBE var. Write strobes for the user control registers
ONEWIREINOUT 1 Bi-directional I/O to 1-wire sensor
ONEWIREMONITORIN 1 Input to the 1-wire monitor entity
ONEWIREMONITOROUT 1 Output to an optional 1-wire monitor entity in a

different device
REGIOVARENDPOINTID 16 Variable endpoint id. Used if corresponding

generic is enabled
TIMEGLOBAL 32 Global timing registers, counting microseconds
TIMELOCAL 8 Local fine timing, running with chip frequency,

reset every microseconds
TIMESINCELASTTRG 32 Clock cycles since reception of last reference

time signal
TIMETICKS 2 Clock strobe signals send every microsecond (bit

0) or every 1.024 milliseconds (bit 1)

Table A.9.: The slow control interface has a number of ports of simple registers and further
information.
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Port Width Description

CTSSTARTREADOUTOUT 1 This flag is set while a read-out transaction is go-
ing on. The signal rises a few clock cycles after
the read-out request has been forwarded toward the
front-ends. The falling edge of the signal follows the
CTSFINISHEDIN signal from the attached logic

CTSNUMBEROUT

CTSCODEOUT

CTSINFORMATIONOUT

CTSREADOUTTYPEOUT

16
8
16
4

On these ports, the information transported with the
read-out request is shown. These outputs are valid
while CTSSTARTREADOUTOUT is set

Table A.10.: The ports of the Streaming API interface on which information from the CTS is
given. This interface is used to transport data out of TrbNet to another medium
like Gigabit Ethernet

A.5. Streaming API

The Streaming API is used to transfer event data from TrbNet to another destination or net-
work protocol is described in section 5.6. The ports of this interface can be divided into three
parts: Ports connection to the CTS for read-out request (see table A.10), the interface to send
an acknowledge and the remaining event data to the CTS (see table A.11 and the interface on
which data from the front-ends is received (see table A.12). Figures A.10 and A.11 show the
typical procedure of a read-out request received from the CTS followed by event data sent
by the front-ends. The remainng empty event and termination sent to the CTS is shown in
figure A.12.
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Port Width Description

CTSDATAIN 16 The Data that is to be sent to the CTS. The first word
for each event must be a valid Event Information
word, the subsequent words are written in 16 Byte
words, MSB first.

CTSDATAREADYIN 1 Data is being offered on CTSDATAIN. The data
is read by the interface in the same clock cycle as
CTSDATAREADYIN and CTSREADOUT both are set.

CTSREADOUT 1 The interfaces currently reads the data offered on
CTSDATAIN. See CTSDATAREADYIN

CTSLENGTHIN 16 The length of data, counted in 32 bit words. This
word must be valid while the Event Information
word is offered to the interface

CTSREADOUTFINISHIN 1 Strobe signal to show that the full read-out process
has been finished

CTSSTATUSBITSIN 32 The status and error information to be passed to the
CTS. See section 5.8 for details. This information
must be valid when CTSREADOUTFINISHEDIN is
high

Table A.11.: The ports of the Streaming API interface to send data to the CTS. This interface
is used to transport data out of TrbNet to another medium like Gigabit Ethernet

Port Width Description

FEEDATAOUT 16 Data from the front-ends
FEEDATAREADYOUT 1 Data on FEEDATAOUT is valid
FEEREADIN 1 Attached logic currently reads data from front-end.

See also CTSDATAREADYIN

FEESTATUSBITSOUT 32 Error and status information from front-ends. Data is
valid for 50 ns after falling edge of FEEBUSYOUT

FEEBUSYOUT 1 High while waiting for data from front-ends

Table A.12.: The ports of the Streaming API interface where data from front-ends is offered.
This interface is used to transport data out of TrbNet to another medium like
Gigabit Ethernet
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A.5. Streaming API

Figure A.10.: Streaming interface I: Start of readout and data receiving from FEE

Figure A.11.: Streaming interface II: End of readout data from FEE
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Figure A.12.: Streaming interface III: End of transaction, sending answer to CTS
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B. Trigger Distribution

The Central Trigger System is able to generate a set of different reference time signals de-
pending on the detector they are dedicated for. The signalling standard used is either LVDS
for short cables or PECL for longer signal distances. In general, the last part of each refer-
ence time cable is a LVDS signal for compatibility reasons. The signals output by the CTS
are distributed using twisted pair cables, either with flat-cables or with shielded RJ-45 cables.
The finer distribution to all 500 front-end boards is done on Fan-out boards with up to ten
outputs each which are mounted within the detector.

Most detectors have a special requirement on the arrival time of the reference signal and
cable length has been adjusted accordingly. For some signals an additional delay can be
generated inside the CTS. All cables, signals and requirements for the different subsystems
are listed in figure B.1.

Figure B.1.: The trigger signals are generated in the Central Trigger System and distributed
to all detectors. The type and length of wires and all intermediate electronics are
depicted.
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C.1. Common Slow Control Registers

The TrbNet slow-control channel features a rich set of registers common to all network nodes.
This simplifies the effort needed for monitoring. The common features can be sub-divided
into status (tables C.1 and C.2) and control registers (tables C.3 and C.4) as well as further
information registers (see table C.5).

Bits Description

31 – 20 temperature (in 1/16th degree)
19 – 16 reserved

15 link data error (e.g. code violation)
14 single Event Upset detected
13 timing Trigger Input
12 last event sent on read-out channel is broken
11 severe problem in event data buffer / IPU request handler
10 IPU requested event partially not found / data missing
9 IPU Event not found
8 timing trigger missing
7 frontend error
6 frontend not configured
5 IPU channel counter mismatch
4 LVL1 trigger counter mismatch
3 note flag
2 warning flag
1 error flag
0 serious error flag

Table C.1.: The Common Status Register 0 contains several flags to signal the over-all status
of the front-end. Additionally, the temperature of the board is reported.
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Register Bits Description

1 15 – 0 Trigger: Internal LVL1 trigger number
1 31 – 16 Read-out: Number of last event read out
2 13 – 4 Trigger: Error flags related to reference time
2 26 – 16 Trigger: Delay between reference time and LVL1 trigger informa-

tion
3 15 – 0 Trigger: Number of pulses (i.e. rising edges) seen on the reference

time input
3 31 – 16 Trigger: Length of last reference time signal (in 10 ns units)
4 3 – 0 Media Interface: Counter for reset signals received via optical link
4 23 – 16 Media Interface: Number of retransmission requests received
4 31 – 24 Media Interface: Number of retransmission requests sent
5 15 – 0 Trigger: Lower 16 Bit of trigger information received with last

LVL1 trigger
5 19 – 16 Trigger: Type of last LVL1 trigger
5 23 – 20 Trigger: Lower 4 Bit of last LVL1 trigger number
5 31 – 24 Trigger: Code of last LVL1 trigger
6 15 – 0 Trigger: Number of invalid triggers, i.e. LVL1 triggers not pre-

ceeded by a reference time signal
6 31 – 16 Trigger: Number of occurences of multiple valid reference time sig-

nals before one LVL1 trigger
7 15 – 0 Trigger: Number of spikes seen on the reference time input (sampled

with system clocks)
7 31 – 16 Trigger: Number of spurious triggers, i.e. reference time signals

preceeding a RTL trigger
8 15 – 0 Trigger: Number of spikes on the reference time input using asyn-

chronous detection

Table C.2.: The Common Status Registers 1 to 8 contain various information about the trigger
logic and status of the media interface error correction.
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Bits Description

23 Send front-ends to stand-by mode (“End Run”)
22 Initialize front-ends (“Begin Run”)
16 Dummy reference time signal generated internally
15 Reboot FPGA
9 Reinitialize front-ends with next trigger
5 Reset status and error counters
4 Reset persistent error flags
3 Master reset for front-end logic
2 Empty IPU chain / reset IPU logic
1 Reset trigger logic
0 Reset frontends

Table C.3.: The Common Control Register 0 (CCR0) contains strobe signals that trigger cer-
tain functions in the network nodes, such as partial resets, status register erasing
and initialization.

Bits Description

31 Enable reference time input
30 Enable sending debug information
29 Invert reference time input signal
28 Single Event Upset Detection enable
27 Enable error correction in media interface

23 – 20 Select event data format
15 – 0 Enable for individual frontends

Table C.4.: The Common Control Register 2 (CCR2) contains configuration for basic func-
tionalities. Settings for the reference time input and the data to be sent for each
event can be selected.
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Register Bits Description

40 31 – 0 Compilation time of the FPGA design. The value is a Unix times-
tamp

41 31 – 0 FPGA design version. The version number can be assigned freely
for each design

42 15 – 0 User defined, minor hardware version number. This value can be
freely chosen, e.g. to mark designs for slightly modified FPGA
boards.

42 31 – 16 Global hardware identifier. The number identifies the type of hard-
ware the design is intended to be used on. The value is globally
assigned as listed in [63].

50 31 – 0 Global clock. All designs contain a clock, counting microseconds
since the last clock reset. Clocks can be adjusted to any value by
writing to this register.

51 31 – 0 Time since last reference time signal, counting clock cycles of the
FPGA.

Table C.5.: The Board Information and Time Registers provide additional information about
the hardware and FPGA design version as well as a global clock.
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C.2. Hub Registers

Hub Configuration Registers

0xC0, 0xC1, 0xC3: Port Enable The three registers are used to switch ports of the hub on
or off individually for each channel (in the given order: LVL1 trigger, read-out and
slow-control). Each bit of the registers corresponds to one port of the hub. If set to 1,
the port is logically enabled inside the hub logic and disabled otherwise. If a port is
off, the link is still established, but no data is sent to this port nor an reply is expected
from this port.

0xC5: Time-out Configuration The time-outs (i.e. how long the hub logic waits for a reply
from each port) can be adjusted for each channel. The available options are: 0: off,
1: 128 ms, 2: 256 ms, 3: 512 ms, 4: 1 s, 5: 2 s, 6: 4 s, 7: 8 s. In the network, only
the hub connected to a failing node is supposed to generate a time-out. Hence, on a
central hub the time-out delay has to be higher than on a network hub deeper inside the
network structure. Followingly, the time-out delay can be decreased in steps of 2 ms
according to the hub offset setting. The bits of this register are defined corresponding
to the following list:

Bit 2 – 0 LVL1 channel

Bit 6 – 4 Read-out channel

Bit 14 – 12 Slow-control channel

Bit 19 – 16 Hub offset

Hub Monitor and Status Registers

0x80, 0x81, 0x83: Waiting for Reply The three registers show the current status of each port
of the hub on each of the network channels (in the given order: LVL1 trigger, read-out
and slow-control). Each bit of the registers corresponds to one port of the hub. If set to
1, the hub logic is currently waiting for a reply on this port.

0x84: Link Status The current status of a physical hub port is shown. Each bit corresponds
to one hub port. If the link on this port is established and able to transmit and receive
data, the bit in this register is set.

0x85: Uplink Configuration Configuration of the hub. For each link that is configured to
accept requests, the corresponding bit is set.

0x86: Downlink Configuration Configuration of the hub. For each link that is configured to
accept replies, the corresponding bit is set.
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0x87: Read-out Handler Status Status of the read-out handling logic. The description of
the bits of this register can be found in [63].

0x88, 0x89, 0x8B: Time-out The three registers show if a time-out was detected for each
hub port and network channel. The registers are set as soon as a time-out is detected
and are cleared after reading via slow-control.

0x8C, 0x8D, 0x8F: Hand-shake Error The three register report errors in the hand-shake
done in the link layer (IO-Buffers). For each network channel and hub port the corre-
sponding bit is set if data transmission had to be stopped due to a missing acknowledge.

0x90: Transmission Error On ports with transmission error correction, all hub ports that
encountered transmission errors are indicated by a set bit in this register.

0xA0, 0xA1, 0xA3: Error Information For each of the three network channels, the status and
error information sent by the hub with a reply is stored.

0xA4: Slow Control Error Serious errors on the slow-control channel are summarized for
each port of the hub.

0xA5: Board Tracking The register provides the information needed for tracking a boards
connection through the network. See section D.2 for details.

0x4000 – 0x400F: Read-out Packet Counter A register for each port of the hub with a
counter of network packets (i.e. 8 Byte of payload) received on the read-out chan-
nel.

0x4010 – 0x401F: Slow-control Packet Counter One register for each port of the hub con-
tains a counter of network packets received on the slow-control channel.

0x4020 – 0x402F: Error Information Each register corresponds to one port of the network
hub and contains a part of the status and error information received on this port with
the last transfer. The registers contents are:

Bit 7 – 0 Bit 7 – 0 of the error information on the LVL1 channel

Bit 15 – 8 Bit 23 – 16 of the error information on the LVL1 channel

Bit 23 – 16 Bit 7 – 0 of the error information on the read-out channel

Bit 31 – 24 Bit 23 – 16 of the error information on the read-out channel

0x4030 – 0x43F: Inclusive Busy Counter The total busy time (i.e. the time the hub waits
for a reply on this port on the LVL1 channel) is monitored for each hub port. The value
is given in microseconds. Counters can be cleared by writing to 0x4030.
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0x4040 – 0x404F: Exclusive Busy Counter The exclusive busy time (i.e. the time the hub
waits for a reply on this port on the LVL1 channel and no other port is busy as well)
is monitored for each hub port. The value is given in microseconds. Counters can be
cleared by writing to 0x4040.

0x4060 – 0x406F: Transmission Error Correction The number of retransmission requests
received (Bit 23 – 16) and requests sent (Bits 31 – 24) are shown for each port of the
network hub. The lower 16 Bit contain information about the status of the link state
machines (see [63] for details).
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C.3. MDC Configuration and Status Registers

The MDC subsystem features a rich set of status and configuration registers. The basic con-
trol signals and values are shown in table C.7. The data reduction and filtering is configured
using the settings shown in table C.8. The values of the ADC measuring the most important
voltage levels on the OEP are available in registers shown in table C.9, the corresponding
voltages for each ADC channel are given in table C.10.

The status of each internal state machine controlling the communication to the Mother-
board is available from the registers listed in table C.12. Status information and statistics are
available in registers and sent in the read-out data stream for each status trigger event. These
registers and data identifiers (compare table 6.2) are listed in table C.11.

The configuration for each TDC and the DAC on the motherboard is shown in table C.6.

Name short MBO long MBO

TDC Reg. 0 (Mode 0) 0xA001+2×TDC 0xA061+2×TDC
TDC Reg. 1 (Mode 1) 0xA011+2×TDC 0xA079+2×TDC
TDC Reg. 2 (Cal. Mask) 0xA021+2×TDC 0xA091+2×TDC
TDC Reg. 3 (Inp. Mask) 0xA031+2×TDC 0xA0A9+2×TDC
Thresholds 0xA049+2×DBO 0xA0CD+2×DBO

Table C.6.: The MDC Motherboards can be configured by several registers in each TDC and
the on-board DAC. The position in the internal memory depends on the type of
motherboard (short or long). The variables DBO and TDC have to be replaced
with the corresponding DBO or TDC number, respectively. Note that both are
counted from 0. Addresses in the range above 0xA000 not listed must not be
written since they contain essential control information.
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Reg. Bit Description

0x20 22 Executes a begin run trigger to initialize MBO and TDC
0x20 16 Simulates a timing trigger to test the read-out in a setup without an

external common stop signal
0x20 15 Reloads the firmware of the FPGA from Flash
0x20 9 Force a reinitialization of the motherboard. It is executed after the next

trigger sent by the CTS has been processed
0x20 5 Reset status registers and error counters
0x20 4 Reset persistent error flags
0x20 1 Resets the TDC Read-out, Data Handler and Trigger Handler logic

blocks.
0x20 0 Resets the motherboard control logic and disables TDC. A begin run

trigger is necessary to re-configure the motherboard.
0x22 31 Enable common stop input
0x22 30 Enable sending debug data
0x22 21 Enable sending dummy data words instead of real TDC data
0x22 20 Select data format: 0: compressed, 1: long data format
0xC0 5 – 4 1: short MBO, 2: long MBO
0xC1 0 Switch on blinking of LED to identify a board
0xC1 10 Enable automatic reconfiguration in case of no token return
0xC1 27 – 16 Number of dummy data words (if enabled)

Table C.7.: The control registers for configuration of the MDC front-end

Register Bits Description

0xC0 25 – 16 Maximum number of data words per event
0xC1 8 Suppress sending of a hit 0 without preceeding hit 1 from one chan-

nel. Note that this also suppresses double or triple hit 0.
0xC1 9 Suppress sending of a hit 1 without subsequent hit 0 from one chan-

nel
0xC2 10 – 0 Lower Threshold of TDC data for hit 0. Only data words with a

time greater or equal this value are transported.
0xC2 26 – 16 Lower Threshold of TDC data for hit 1. Only data words with a

time greater or equal this value are transported.

Table C.8.: MDC Control Registers for Data Filtering
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Address Description

0x8000 Control Register. Bit 0: ADC enable - measurements are performed
continously, 1: perform a single measurement for all voltages, then
switch off again, 2: reset the ADC logic, 3: Enable the comparison
with thresholds and update the voltage status overview

0x8001 Voltage status overview. Each hex digit of the register value repre-
sents one voltage. Values: 0: voltage ok, 1: too low, 2: too high or
combinations thereof. Too low / too high flags are stored until ADC
reset.

0x8010 – 0x8017 Current voltage level. One register for each channel. Bit 11 – 0 show
the current voltage, measured in millivolt.

0x8018 – 0x801F Threshold Settings. One register for each channel. Bit 11 – 0 show
the low threshold, Bit 27 – 16 contain the high threshold in millivolt.

0x8020 – 0x8027 Min/Max values. One register for each channel. Bit 11 – 0 contain
the lowest measured value, Bit 27 – 16 show the highest measured
value. Register are reset on ADC reset.

Table C.9.: Memory map for MDC OEP voltage monitoring ADCs. The voltages assigned to
each channel are shown in table C.10

Channel Voltage Nominal Voltage

0 5V input 5.8V
1 5V regulated 5.0V
2 3.6V input 3.8V
3 3.3V regulated 3.35V
4 1.8V input 1.8V
5 1.2V regulated 1.20V
6 3.0V input 3.0V
7 -3.0V input -3.0V

Table C.10.: The address offset in registers 0x8010 to 0x8027 of the OEP corresponds to the
ADC channels used for voltage monitoring. Both 5V channels are connected
using a voltage divider, thus reading 2.5V at nominal voltage.
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Name Code Description

Basic Info. 0x00 Bit 15 – 0: Internal trigger number, Bit 16: Short MBO, Bit
17: Long MBO, Bit 18: CMS active

Token Missing 0x01 Number of missing token
Phys. Triggers 0x02 Number of received triggers
Calib. Triggers 0x03 Number of received calibration triggers
Discarded Hit 1 0x04 Number of discarded hit 1 words from TDC due to threshold

setting
Discarded Hit 0 0x05 Number of discarded hit 0 words from TDC due to threshold

setting
Discarded Words 0x06 Number of discarded words due to limit per event
Truncated Evt 0x07 Number of truncated events
Single Hit 1 0x08 Number of single, double or triple hit 1
Single Hit 0 0x09 Number of single, double or triple hit 0
Retransmit Req. 0x0A Bit 11 – 0: Number of retransmit requests sent,

Bit 23 – 12: Number of retransmit requests received
Words 0x0B Number of words given to data handler
Invalid Trg. 0x0C Bit 15 – 0: Number of invalid triggers received
Multiple Trg. 0x0D Bit 15 – 0: Number of multiple triggers received
Spikes Trg. 0x0E Bit 15 – 0: Number of spikes on CMS received
Spurious Trg. 0x0F Bit 15 – 0: Number of spurious triggers received
Idle Time 0x10 Idle time of the trigger handler state machine in µs
Init Time 0x11 Time the OEP spent for reinitalizations in µs
Calib Time 0x12 Time the OEP spent with calibration in µs
Readout Time 0x13 Time while reading data from TDC in µs
Waiting Time 0x14 Time spent with various small waits in µs
Dummy Word 0x1E Dummy data word. Sent in every event when selected by

CCR2 Bit 22. Bit 23 – 16: Lower 8 bit of trigger number. Bit
11 – 0: Word counter

Debug Word 0x1F Debug word. Sent in every event when selected by CCR2 Bit
30. Bit 15 – 0: Trigger number

Table C.11.: MDC Status words are used to transport supplemental information along with
event data. All words are identified by a 5 Bit code as listed above. The values
are also accessible via slow control in registers 0x9100 to 0x9114.
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Address Description

0x9000 Main control. Bit 2: Common Stop Active
0x9001 Trigger Handler. Bit 3 – 0: Status of the state machine. 0: idle, 1: process-

ing begin run trigger, 2: processing timing trigger, 3: processing calibration
trigger, 4: read-out, 5 – 6: releasing LVL1, 7 – 8: reinitialization

0x9002 Data Handler. Bit 3 – 0: Status of the state machine, Bit 21 – 12: counter for
data words

0x9003 TDC Readout. Bit 3 – 0: Status of the state machine, Bit 6: DST signal from
MBO, Bit 7: AOD signal from MBO, Bit 8: Reserve signal from MBO

0x9005 Begin Run Trigger. Bit 3 – 0: Step of the mode settings sequence, Bit 7 – 4
step of the configuration sequence, Bit 19 – 16 status of the state machine

0x9006 Mode Line Setting. Bit 7 – 0: status of the state machine, Bit 16: GDE, Bit 17:
MOD, Bit 18: RES, Bit 19: TOK, Bit 20: WRM, Bit 21: RDM

0x9007 TDC Setup. Bit 7 – 0: status of the state machine

Table C.12.: The MDC endpoints contains registers that reflect the current status of all inter-
nal components. The table shows only an exerpt of the most important values.
The full list is available in [63].

145



D. Control and Monitoring Software

The main interface between the DAQ network and all software used for slow-control pur-
poses is provided by the libtrbnet library. This library was developed at TU Munich and is
available for different platforms. It can either be run on the Etrax CPU on a TRB and controls
the interface to the on-board FPGA. A second version runs on any PC Linux platform and
connects to the Pexor PCI-Express card.

The software can either be used locally on the CPU that is connected to the FPGA inter-
face but also contains server that allows access from anywhere within the network. Here, a
Remote Procedure Call (RPC) approach is used to set up a server and client system that can
execute any kind of TrbNet access [71].

In this chapter, only few tools used by DAQ experts are shown. The general monitoring
interface to all DAQ sub-systems is described in 7.3.

D.1. Control Software

TrbCmd TrbCmd is the main tool that provides the possibility to send manually every kind
of TrbNet access. In test setup it can be used to send trigger and read-out requests, but mainly
is used to issue slow-control accesses. This software is the basis for most high-level DAQ
control tools. TrbCmd features several scripting capabilities and an easily parseable output
data format for further data analysis [71].

TrbFlash Most DAQ FPGA are equipped with a Flash ROM that is able to initialize the
FPGA after power-up with the correct program. This Flash ROM can be rewritten with up-
dated firmware versions using the DAQ network. TrbFlash contains all features necessary for
this procedure, including identification of the front-end type and Flash ROM version as well
as erasing, programming and verifying the Flash content. For the Pexor card a specialized
version, PexorFlash, is available to program the ROM [71].

TrbDHCP One of the first steps during the Start-up process is to assign the network ad-
dresses to all nodes. TrbDHCP takes a list of unique id to network address assignments and
executes the necessesary commands to configure the network [71].

TrbI2C / TrbRichCmd These are specialized tools to issue commands to configure and mon-
itor the RICH front-end electronics. TrbI2C combined with a VHDL block in the ADCM
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!Register table

# Type # C0 # C1 # C2 # C3 # C4 # C5 #

1 0xA049 0xA04B 0xA04D 0xA04F

2 0xA0CD 0xA0CF 0xA0D1 0xA0D3 0xA0D5 0xA0D7

!Value table

# Board # Type # T0 # T1 # T2 # T3 # T4 # T5 #

0x2000 1 0x60 0x58 0x48 0x80

0x2001 2 0x50 0x50 0x38 0x40 0x40 0x48

Figure D.1.: Example of a database file used to load values to a set of registers in the front-
ends. In the upper part two sets of registers are defined. The lower part containes
front-end addresses, a register set selector and the values to be loaded.

board is able to interface to the I2C interface of the pre-amplifier chips. Other features
of the front-end cards such as temperature monitoring and ID reading is provided by Tr-
bRichCmd [63].

Startup The start-up script is used to execute all commands necessary for starting the DAQ
system. E.g. the main configuration is loaded to all front-ends, data sources are defined and
a list of all front-ends available within the network is generated. A more detailed description
is given in 7.2.1.

The data to be loaded is defined in database files like the one shown in figure D.1.

D.2. Monitoring Software

GbE Monitor

The Gigabit Ethernet Monitor shows a list of all network hubs with GbE interface and dis-
plays the amount of data sent and possible errors from these hubs [72]. A screenshot of the
software is shown in figure D.2.

CTS Monitor & Control

The CTS Monitor [73] gives an overview of the current configuration of the Central Trigger
System and provides the interface to alter all settings. In the same screen the most important
statistic values are shown as well. These include scaler values from all inputs and the current
trigger rate.

Several configuration sets can be saved and restored. A given setup can be selected to be
loaded during the start-up phase of the DAQ network.
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Figure D.2.: The Gigabit Ethernet monitor shows a list of all network hubs with GbE inter-
face and displays the amount of data sent and a list of all errors encountered.

Hub Monitor

The hub monitor [73] gives an overview on the current status of the DAQ network. For
each network hub the number the number of network links available and the number of links
connected to another node are shown. Additionally the busy time on the LVL1 trigger channel
is given for each link. This alows to easily determine which front-end is limiting the DAQ
rate or how big the total dead time of the system is.

The script also monitors the number of boards available in the network and compares them
to a list generated during DAQ start-up to detect missing boards.

LogMon / LogMonEB

All changes in the DAQ system and error messages are logged in a central file. This file is
visualized by the LogMon program [73]. For better usability, the log file monitor is split
in two parts: One shows only errors from the Eventbuilders, the other one covers all other
messages. A screenshot of the main log monitor is shown in figure D.4. [73]
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Figure D.3.: The Hub Monitor displays the busy times of each link of each of the network
hubs within the system. Active network links are shown as green numbers (cor-
responding to the input the hub - hub addresses are displayed in yellow), busy
times are shown as multiples of 10% busy time (in white, with colored back-
ground). The script also monitors the number of boards available in the network
and compares them to a list generated during DAQ start-up to detect missing
boards.

Figure D.4.: The Logfile Monitor shows a log of the most important actions done and errors
found within the DAQ system.
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1 $ . / n e t t r a c e . p l 2154
2 Hop Board P o r t

3 0 8000 2
4 1 8001 3
5 2 8100 2
6 3 8101 6
7 4 1050 2
8 5 1053 5
9 6 2154

Figure D.5.: Example of a nettrace looking up the path to front-end board 0x2154. The access
is routed through six layers of network hubs. In this example, the boards is
connected to hub 0x1053, port 5 which in turn is connected to hub 0x1050, port
2 and so on.

NetTrace - Board Tracing

In many situations the exact knowledge about the network path to a given front-end module
is vital. To disconnect a board from the network, either physically by removing a cable or
logically by changing the network hub configuration, it is necessary to know which port the
board is connected to. Vice versa, if a hub reports a problem with the connection on one port,
one needs to know which board is connected to this port.

Since the TrbNet setup does not contain inherent topological information, on-line tracing
has to be performed. This is implemented in a simple two-step process: First, a slow control
access is done to a specific board33. The network hubs store information about the port from
which the transfer was answered in a register which can be read out by a subsequent access.

The result from this access contains all information to reconstruct the full data path through
the network. An example is shown in figure D.5. By looping over all connected boards the
tree structure of the full network can be deduced.

HadPlot

HadPlot is a versatile tool to visualize any kind of information available from within TrbNet.
It consists of a Perl script that issues and evaluates commands in the DAQ network using
TrbCmd. After processing, data is fed to gnuplot [74] which displays the data in various
different plot formats. Examples are given in section 8.4.

33This access is required to produce a minor error in the front-end, namely an “unknown command” error which
can be caused by issuing a memory read operation on register 0. The reason is the protection from other slow
control accesses which might occur inbetween the two steps of the tracking.
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The tool has a set of predefined plots built-in. Additionally, the user can define any data
source accessible in the DAQ network to be displayed.

The command options are as follows:
hadplot [-d delay] [-n samples] [-o downscaling]

[-g geometry] [-z style] [-c windowtitle]

[-a address -r register -w regwidth -p regoffset [-t title]]*

plotname

The behavior of the plot window are determined by the delay between two data acquitions
(-d) given in milliseconds. For histogram plots, the number of samples to take between two
updates of the plot window (-o) and the number of samples to display (-n) can be defined as
well. In general, the update rate should not be above 10 Hz for graphically simple plots and
1 Hz for plots with many data points. The sampling frequency can be up to 200 Hz when
using the PCI-e interface.

The geometry of the plot window can be given in standard X format (-g, e.g.
640x480+50+100). Note that this string can also be used to set background and font color.
The title of the plot window can be set as well (-c). The style option (-z) is used to select be-
tween different plotting styles and labels on the axes: Style 0 shows dots for each value, style
2 and 4 show bargraphs. Style 2 places bars next to each other, style 4 on top of each other if
more than one dataset is to be displayed. Style 12 is similar so style 4, but the y-axis values
are divided by 1000 to represent seconds or milliseconds instead of microseconds. Adding
1 to each style changes the x-axis labels to network addresses instead of arbitrary numbers.
Note that not all styles are available for all plot types.

For generic plots, a set of network address (-a), register address (-r), width of the value (-w)
and position in the register (-p) can be given to select arbitrary data sources in the network.
All four options are mandatory and can not be left out. The full set can be repeated to define
several data sources to be shown in one plot. Currently, four generic plot types are defined:

reg (“register”) shows the content of registers.

regdiff (“register differences”) shows the differences of register values between two sam-
ples.

hist (“histogram”) shows a histogram of register values. Here, all values returned by the
slow control access are summed up.

histdiff (“histogram differences”) shows a histogram of register values, but only the relative
values for each single register is summed and shown.

Often used plots are predefined and directly accessible via their name. Internally, most are
based on generic plots but some which require preprocessing of data use individual functions.
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