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présentée par

Tingting LIU

pour obtenir le grade de Docteur de l’Université Paris-Sud
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6



Outline

Systematic investigations of di-electron production are performed with HADES (High Ac-
ceptance Di-Electron Spectrometer) at GSI, Darmstadt. The main goal of this experiment is
to study hadronic matter at moderate temperatures and densities using the di-electron probe.
This requires a detailed understanding of the di-electron emission from hadronic systems. The
strategy of HADES is to start with light A + A systems and N + N reactions which allow for
a validation of the detector performance and a good control of different individual di-electron
sources. In this PhD work, new results obtained in proton-proton collisions at 1.25 kinetic en-
ergy are presented. They pave the way to a detailed understanding of the processes involving
the ∆(1232) resonance and, especially the Dalitz decay of the ∆+ resonance (∆+ → pe+e−).

In chapter one, I will start with the presentation of the general physics motivations of HADES
experiments. The first data measured by HADES in heavy-ion reactions will be briefly discussed.
From the results of the heavy-ion reactions, the importance of elementary reactions is deduced.
Finally, I will outline the knowledge about the ∆ (1232) resonance production which is the most
important process in the p + p reactions at 1.25 GeV and will be studied in this PhD.

In chapter two, the description of the HADES spectrometer will be given with emphasis on
the MDC (Mini-Drift Chamber) sub-detector. The experimental conditions specific to the p + p
run at 1.25 GeV will be presented as well.

In chapter three, the simulation framework together with the models/ingredients used for
this PhD work will be shown. A detailed study of the reaction kinematics and the influence from
the detector acceptance and efficiency will be presented, for pp → npπ+ reaction which is the
main reaction channel studied in this PhD.

In chapter four, I aim at demonstrating the experimental data analysis methods which have
been developed in the framework of this thesis : event selection, trigger condition correction and
error estimation, etc.

In chapter five, the results of exclusive one-pion production channels in p + p reactions will
be discussed, with main emphasis on the pp → npπ+ channel. The measured spectra, such as
invariant mass and angular distributions, are compared to the simulation and an integrated cross
section is extracted. At the end, the hadronic channels measured at 1.25 GeV combined with
the same measurements also performed at 2.2 GeV will be shown to give a global view of the
pion production and role of resonances in the 1-2 GeV range in p + p reactions.

In chapter six, I will talk about the data analysis and simulations of another exclusive chan-
nel pp → ppe+e− which is suited to reconstruct exclusively the ∆ Dalitz decay process. The data
analysis which is currently in progress by the HADES collaboration will be briefly shown, while
I will stress in more detail my contribution to the simulation study of the helicity distribution

7
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in this channel.

In chapter seven, the PhD work presented in this document will be summarised. The con-
clusions and outlook will be derived.
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Chapitre 1

Introduction

The main goal of the HADES1 experiment at SIS2 is to explore strongly interacting mat-
ter in heavy-ion collisions in the 1-2 A GeV range. In these conditions, moderate temperatures
(T < 80 MeV) but rather high densities (ρ ∼ (2 − 3) · ρ0) can be achieved.

In ultra-relativistic heavy-ion reactions as studied at RHIC3 or at CERN4, an unconfined
state, the so-called Quark-Gluon Plasma (QGP) can be reached. At SIS energies, a hadronic mat-
ter made of interacting mesons and baryonic resonances is formed. Although quarks and gluons
remain confined, sizeable modifications of the properties of hadrons are predicted
[Leupold et al., 2010].

In quark models, medium modifications are due to the change of the structure of the QCD
(Quantum ChromoDynamics) vacuum, induced by the partial restoration of chiral symmetry
[Rapp et al., 2009]. These models predict a decrease of hadron masses of the order of 20% for
the ρ meson at normal density [Brown and Rho, 1991, Hatsuda and Lee, 1992].

In hadronic models, in-medium spectral functions of vector mesons (will be introduced in
section 1.1.1) are calculated from their propagation in the hadronic matter. The main effect
comes from the excitation of resonance-hole states (N(1520)N−1, ∆(1232)N−1, ...) (see fig. 1.1)
and the result is mainly a broadening of the spectral function with respect to the free meson.

Fig. 1.1 – Dressing of the ρ in the nuclear medium by coupling to baryonic resonances. Left :
The modification of the ρ self-energy through its coupling to resonance-hole states ; Right :
∆(1232)-nucleon-hole polarization.

1High Acceptance Di-Electron Spectrometer
2SchwerIonen Synchrotron
3Relativistic Heavy-Ion Collider
4Conseil Européen pour la Recherche Nucléaire
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10 CHAPITRE 1. INTRODUCTION

1.1 Di-lepton probe as a tool to study medium effects

Di-lepton (e+e− pair, or called di-electron) probe is considered as a reliable tool to study the
medium effects because of its insensitivity to strong interaction. In fact di-electrons come out
from the dense matter without interacting much with the other particles, thus an undistorted
signal can be observed. In this section, I will at first introduce an important di-electron source
vector mesons. Then other sources, like baryonic resonances, which also contribute to di-electron
production, will be discussed.

1.1.1 Vector mesons

The vector mesons are those mesons with total spin 1 and odd parity, usually noted as
JP = 1−. They have a direct decay to di-electron channels, as summarized in table 1.1. Despite
the small branching ratio, di-electron spectroscopy is the ideal tool to study the in-medium
vector mesons. In particular, the ρ meson has the largest probability to decay inside the dense
medium due to its very short life time, thus the di-electron decay from the ρ can bring the
proper information from in-medium properties.

Meson Mass Γ cτ Main decay e+e− branching ratio
[MeV/c2] [MeV/c2] [fm]

ρ 775.5 149.1 1.3 π+π− 4.72 · 10−5

ω 782.7 8.49 23.4 π+π−π0 7.28 · 10−5

φ 1019.5 4.26 44.4 K+K− 2.95 · 10−4

Tab. 1.1 – Vector meson main characteristics. [Nakamura et al., 2010]

The principle is to reconstruct the in-medium mass distribution, or spectral function of vector
mesons using the di-electron invariant mass. In practice, a di-electron invariant mass spectrum
is reconstructed, which is a superposition of different di-electron sources.

1.1.2 Di-electron sources

In the 1-2 A GeV energy range, the main di-electron sources can be separated into four
categories listed as following :

– The vector meson decays (see table 1.1),
– The Dalitz decay of mesons :

- π0 → γe+e− with branching ratio 1.2%.
- η → γe+e− with branching ratio 7 · 10−3.
- ω → π0e+e− with branching ratio 8 · 10−4.

– The Dalitz decay of baryonic resonances :
- ∆ → Ne+e−.
- N(1535) → Ne+e−, etc.

– The nucleon-nucleon bremsstrahlung : NN → NNe+e−.

1.1.3 Importance of baryonic resonances in di-lepton emission

In the 1-2 A GeV range, baryonic resonances are very important for meson production.

10



1.1. DI-LEPTON PROBE AS A TOOL TO STUDY MEDIUM EFFECTS 11

The role of the ∆(1232) resonance is dominant, but the higher lying resonances start to play
an increasing role when the incident energy increases. Besides its pionic decay, the N∗(1535) is
also important for the η production and the N∗(1520), ∆(1620) for the ρ production. Through
the direct decay or Dalitz decay of these mesons, for example π0 → γe+e−, ρ → e+e−, ..., the
baryonic resonances therefore contribute on one hand indirectly to the di-electron production.
On the other hand, di-electrons can be emitted directly by baryonic resonances via their own
Dalitz decay modes. For example, the Dalitz decay of ∆(1232) (∆ → pe+e−) has never been
measured up to now but the QED calculation predicts a very small branching ratio of 4.2 ·10−5.
Thus, it is an experimental challenge to study this Dalitz decay mode.

The ∆ Dalitz decay implies an electromagnetic transition from the ∆ resonance (fig. 1.2 (a))
to a nucleon. In this transition, the four-momentum transfer q2 is equal to the e+e− invariant
mass squared, it is therefore a positive quantity. This transition is then referred as Time-Like
type. In electron scattering on proton (fig. 1.2 (b)), transitions from a nucleon to ∆ are also
studied. In this case, the four-momentum squared is negative and the transition is then of the
Space Like type. In the latter case, the form factors have been measured over a quite large range
of q2. As the nucleon and ∆ are composite particles, and the ∆ has spin 3/2, the electromagnetic
hadronic current consists in 3 independent terms, which can be taken as a magnetic, an electric
and a Coulomb term, each weighted by a form factor (GM (q2), GE(q2) and GC(q2) as magnetic,
electric and Coulomb form factors respectively).

(a) ∆ Dalitz decay (b) Pion electro-production

Fig. 1.2 – Illustration of the (a) Time-Like electromagnetic N − ∆ transition in the ∆ Dalitz
decay and (b) the Space-Like N − ∆ transition in pion electro-production experiments.

The di-electron yield mainly depends on the value of the form factors at q2=0 (GM ∼ 3, GE ∼
0 and GC ∼ 0) [Tiator et al., 2003]. On the other hand, for the largest q2 (i.e. q2 ∼ (M∆−MN )2),
which are not too far from the vector meson poles, the Vector Dominance Model (VDM) can
be checked. It stipulates that the coupling of a real or virtual photon to any electromagnetic
hadronic current is mediated by a vector meson (see fig. 1.3) [Sakurai, 1969]. Despite the limi-
tation of low q2, the kinematics probed by the ∆ Dalitz decay is suited to test the VDM.

1.1.4 Nucleon-nucleon bremsstrahlung and ∆ Dalitz decay

The nucleon-nucleon bremsstrahlung is the emission of a virtual photon in the strong interac-
tion field created by the interaction of two nucleons (see fig. 1.4). The description of this process
has to take into account both the NNγ∗ electromagnetic vertex and the nucleon-nucleon interac-
tion, as in the Soft Photon Approximation (SPA) [Gale and Kapusta, 1987] which is widely used

11



12 CHAPITRE 1. INTRODUCTION

Fig. 1.3 – Vector Dominance Model in a baryonic electromagnetic transition.

in transport models. Although the calculation is in principle valid only for low mass di-electrons
the SPA gave reasonable agreement with more complete calculations [Shyam and Mosel, 2003],
at least for the n + p case, where the bremsstrahlung process is the most important.

Fig. 1.4 – Diagrams for the reaction NN → NNe+e−. (a) post-emission, (b) pre-emission and
(c) in-flight emission (for n + p reaction only). The box represents an off-shell nucleon or a ∆.
[Shyam and Mosel, 2009]

In the transport model calculations, the ∆ Dalitz decay and NN bremsstrahlung processes
are usually treated in the way, that the SPA is used to describe bremsstrahlung ; and the di-
electron yield from the ∆ Dalitz decay is then calculated independently and added incoher-
ently. But the description of their processes can be done reliably only through a full quan-
tum mechanical and gauge invariant calculation. Two One Boson Exchange (OBE) models
[Kaptari and Kämpfer, 2006, Shyam and Mosel, 2009], which fulfill these requirements were
presented recently, but the yields obtained in these two calculations were found to differ by
factors 2-3 for both p + p and p + n reactions. The [Shyam and Mosel, 2009] calculation was
in agreement with the SPA, but the predictions by [Kaptari and Kämpfer, 2006] were a factor
2-3 higher. This higher NN bremsstrahlung was taken into account by a renormalisation of the
bremsstrahlung contribution in the HSD transport model. The latter calculation overestimates

12



1.2. EVIDENCES OF MEDIUM EFFECTS 13

however the di-electron yield of p + p as we will show in section 1.6. Inconsistenties in the de-
scription of NN → NNγ∗ remain therefore.

1.2 Evidences of medium effects

Experiments looking for medium effects have been started since late 1980’s using heavy-ion
reactions by many worldwide collaborations. Experiments induced by protons and photons are
also performed to study matter at normal density. We have summarized the main results in
table 1.2.

A lot of observations have been reported, but a global understanding is still missing. The
in-medium mass shift which was expected from quark models has been seen only in the KEK
experiment for the ρ meson. The strongest evidence of medium effect is the broadening of the
ρ meson in ultra-relativistic heavy-ion reactions which agrees with the calculations from Rapp
and Wambach [Rapp and Wambach, 1999].

Experiment Reaction Momentum Vector mesons
/Energy acceptance

[GeV] [GeV/c] ρ ω φ

KEK-E325 pA p>0.6 △ m/m ∼ −9% △ m/m ∼ −9% △ m/m ∼ −3.4%
12 GeV △ Γ ∼ 0 △ Γ ∼ 0 Γ ∼ 15 MeV/c2

γA p>0.8 △ m ∼ 0 △ Γ ∼ 200 MeV∗

CLAS 0.6-3.8 GeV △ Γ ∼ 70 MeV 〈p〉 > 1. GeV/c △ Γ ∼ 70 MeV
ρ ∼ ρ0/2

CBELSA γA p>0 △ m ∼ 0
/TAPS 0.9-2.2 GeV △ Γ ∼ 200 MeV

〈p〉 ∼ 1.1 GeV/c

SPring8 γA p>1.0 △ m ∼ 70 MeV∗

1.5-2.4 GeV 〈p〉 ∼ 1.8 GeV/c

CERES Pb+Au pt >0 broadening favored
158 AGeV over mass shift

NA60 In+In pt >0 △ m ∼ 0
158 AGeV strong broadening

Tab. 1.2 – Experimental results on in-medium modifications of the ρ, ω and φ mesons measured
by different experiments (for details see [Metag, 2007]). The lower limit in p (momentum) or
pt (transverse momentum) is indicated in the third column. The results indicated with a star
correspond to transparency ratio measurements.

On the other hand, in 1998, the DiLepton Spectrometer (DLS) experiment at the BEVALAC
facility at Berkeley reported a strong excess of the di-electron production over the hadronic cock-
tail [Porter et al., 1997, Wilson, 1998] measured in a Ca+Ca and C+C experiments at 1 AGeV.
Even when medium effects were included, no model was able to explain these enhancements at
that time [Ernst et al., 1998, Bratkovskaya et al., 1998]. This was known as the ”DLS puzzle”
and remained unexplained, until 2008 when the HADES collaboration published the results of
the di-electron production measured in C+C collisions at 1 A GeV [Agakichiev et al., 2008].
The former results from DLS were fully confirmed by the HADES data.

13



14 CHAPITRE 1. INTRODUCTION

1.3 The HADES program

The HADES collaboration runs a di-electron experimental program since 2001. The whole
activities and future plan are listed in table 1.3. The first goal was to revisit the di-electron
production in the 1-2 A GeV energy range with the light systems using a much better experi-
mental set-up than DLS. After confirming the DLS data, the main motivation of HADES is put
on the question of in-medium modification of vector mesons, using the heavy-ion reactions, e.g.
Ar + KCl and also p + Nb, to check effects at normal density. Besides, a series of elementary
reaction experiments induced by protons and projected with pions on nuclei were and will be
performed to give an understanding of elementary processes. Experiments with heavier systems
are scheduled in the near future.

Date System Physics goal

2001-2002 C+C 2 AGeV • Di-electron spectrum in small size system
2004 C+C 1 AGeV • Check of DLS data
2004 p+p 2.2 GeV • Validation of detector performance by pp elastic scattering

• π0 and η Dalitz decays (helicity distribution)
2005 Ar+KCl 1.75 AGeV Medium effects
2006 p+p 1.25 GeV • ∆ Dalitz decay

• Exclusive pp → ppe+e− analysis
2007 d+p 1.25 AGeV pn bremsstrahlung
2007 p+p 3.5 GeV Inclusive ρ and ω production cross section
2008 p+Nb 3.5 GeV Vector meson at normal density

2009-2010 HADES upgrade
2011-2012 Ni+Ni 1.65 AGeV Vector meson at high density

Au+Au 1.25 AGeV
2013-2014 π−+A, π−+p Vector meson at normal densities and off-shell production

1.17 GeV, 1.8 GeV

Tab. 1.3 – The HADES di-electron experimental program.

The main goals of di-electron measurement in different systems are mentioned in table 1.3,
as well. In all these experiments, hadrons are also detected. The detection of kaons allows for
very fruitful studies of strangeness production [Agakichiev et al., 2009a]. The measurement of
pions brings a lot of interest as well. On one hand, the pion detection in heavy ion collisions
has been used to extract information from thermal emission [Agakichiev et al., 2009b]. On the
other hand, in elementary reactions, the pion emission channels can be studied in an exclusive
way as will be shown in chapter 5. For example, pp → npπ+, pp → ppπ0 and pp → ppπ+π− can
be studied in p + p collisions or pn → ppπ−, pn → pnπ+π− and pn → ppπ−π0 can be studied in
quasi-free p + n reactions.

1.4 C + C collisions at 1-2 A GeV with HADES

The first results of the HADES experiment came from the C + C system studied at 1
and 2 A GeV [Agakichiev et al., 2007, 2008]. At 1 A GeV, a nice agreement was found be-
tween HADES and DLS data. Recently many transport model calculations, such as Hadron
String Dynamics (HSD) [Bratkovskaya and Cassing, 2008], Ultra-Relativistic Quantum Molecu-
lar Dynamics (UrQMD) [Schmidt et al., 2009], Isospin Quantum Molecular Dynamics (IQMD)
[Thomère et al., 2007] and Relativistic Quantum Molecular Dynamics (RQMD) [Cozma et al.,
2006], have been performed and the description of DLS and HADES C +C data improved. This

14



1.4. C + C COLLISIONS AT 1-2 A GEV WITH HADES 15

put an end to the DLS puzzle. On fig. 1.5, four examples of such calculations are shown for the
di-electron spectra measured by HADES in C + C reactions at 2 A GeV.

(a) HSD (b) UrQMD

(c) RQMD (d) IQMD

Fig. 1.5 – Di-electron mass distribution measured in C +C reactions at 2 A GeV compared with
the vacuum calculations from different transport codes : (a) HSD, (b) UrQMD , (c) RQMD and
(d) IQMD transport models. Black dots show the efficiency corrected HADES data and different
color lines present various di-electron sources implemented in the calculations.

Resonably agreement is found between parts of the data and these four transport model
calculations. However, the ingredients in models as well as the treatment of the di-electron
sources are very different from one model to another, especially in the intermediate di-electron
invariant mass region where the excess was observed. In this region, ∆ Dalitz decay and NN
bremsstrahlung play important roles, beyond the η Dalitz.

For a better understanding of the contribution from such processes and their relationship

15



16 CHAPITRE 1. INTRODUCTION

to the excess yield, the elementary reactions are needed. In the following, we will focus on the
discussion related to the role of the baryonic resonances, mainly the ∆(1232) resonance.

1.5 ∆(1232) resonance production

1.5.1 Results from π production experiments

The ∆(1232) resonance is a spin 3/2 and isospin 3/2 state whose main decay channel is a
two-body decay into a π (spin 0, isospin 1) and N (spin 1/2, isospin 1/2) (> 99%). The exci-
tation of the ∆(1232) resonance is known as the main process of pion production in the 1-3 A
GeV range in p + p and n + p reactions. The cross sections as well as angular distributions of
the pion production have been measured in many previous experiments.

The π0 and π+ exclusive production were measured in the 1960s using bubble chambers at
Brookhaven National Laboratory (BNL) at 2 GeV (

√
s = 2.70 GeV) [Fickinger et al., 1962] and

later on at 1.48 GeV (
√

s = 2.51 GeV) [Eisner et al., 1965]. Similar measurements done at the
Birmingham proton synchrotron can also be found at 0.97 GeV (

√
s = 2.31 GeV) [Bugg et al.,

1964]. The problem in these experiments was the limited statistics (between 1000 and 1400
events for pp → npπ+ channel), but the advantage was a full coverage of acceptance. Another
measurement which refers to the pp → npπ+ reactions measured at 0.8 GeV at the Los Alamos
Meson Physics Facility (LAMPF) can be found in [Hudomalj-Gabitzsch et al., 1978]. In the
1980s, Shimizu et al. [Shimizu et al., 1982] have reported measurements of pp → ppπ0 and
pp → npπ+ reactions between 2.0 <

√
s < 2.43 GeV done at KEK using bubble chamber.

A series of recent studies also related to the ∆ production mechanisms have been carried out
with newer experimental set-ups. The neutral pion production in p+p collisions, i.e. pp → ppπ0,
has been measured at the PNPI synchrocyclotron with beam momenta at 1.581 and 1.683
GeV/c with a hydrogen bubble chamber [Sarantsev et al., 2004]. The COSY-TOF collaboration
reported on π production also in p+p reactions measured using the COSY-TOF spectrometer at a
beam energy of 0.95 GeV/c, for both pp → ppπ0 and pp → npπ+ channels [Abd El-Samad et al.,
2006, 2009]. The recent measurements of the CELSIUS-WASA collaboration in the p + p reac-
tions at 1.1-1.3 GeV were mainly focused on two-pion production. Preliminary results concern-
ing exclusive one-pion production channels can be found in [Zhen et al., 2009, Skorodko, 2009,
Clement et al., 2006]. The emphasis is put on the contribution of higher lying resonances, such
as N∗(1440) and N(1520).

1.5.2 The One-Pion Exchange Model

These results mentioned above have been satisfactorily explained by the One-Pion Exchange
Model (OPEM) [Ferrari and Selleri, 1961, König and Kroll, 1981] in the pp → n∆++ channel,
considering that the pp → p∆+ channel and the non-resonant pion production are less important.
We show here (fig. 1.6), the comparison of Dmitriev’s OPEM predictions [Dmitriev and Sushkov,
1986] with the spectra measured at 0.97 GeV [Bugg et al., 1964].

The studies are realized in fact by using the pp → npπ+ channel : the invariant mass distribu-
tion of (π+, p) pairs (or it’s excitation energy) shows the ∆++ resonance and the center-of-mass
angular distribution of the neutron reflects the ∆++ resonance production angular distribution
(see fig. 1.6). It was found that the ∆ production shows a strongly forward/backward peaked

16



1.5. ∆(1232) RESONANCE PRODUCTION 17

angular distribution and the mass distribution is slightly asymmetric. Within the relative big
error bars, the OPEM gives a good description of the data.

(a) (b)

Fig. 1.6 – (a) Excitation energy of the (π+, p) pairs and (b) angular distribution of the neutron
in the p + p center-of-mass system in pp → npπ+ reactions at a proton kinetic energy of 0.97
GeV. The solid curve is an OPEM calculation which is compared to experimental data (dots)
[Bugg et al., 1964].

1.5.3 Pion angular distribution

The ∆ decay angular distribution depends on the population of different spin states excited
in the NN → N∆ process. The latter can be described in terms of a 4×4 spin density matrix ρij

[Gottfried and Jackson, 1964]. By choosing the axes in an appropriate way (see section 3.2.4),
the pion angular distribution can be expressed quite simply in function of spin density matrix
elements :

dσ

dΩ
∼ { (1/2 − ρ33) (3 cos2 θ + 1)

+ ρ33 3 sin2 θ

− ρ31 4
√

3 sin θ cos θ cos φ

− ρ3−1 2
√

3 sin2 θ cos 2φ}

(1.1)

In the HADES case, there is no φ dependence since we are always looking at observables
integrated over the full azimuthal range and the integration gives zero. One can write therefore
the pion angular distribution as :

dσ

dcosθ
∼ B(1 + Acos2θ) (1.2)

where B is the normalization factor and A = (3− 12 ρ33)/(4 ρ33 + 1). It means that the differ-
ential cross section depends only on ρ33.

17



18 CHAPITRE 1. INTRODUCTION

In the case of pure one-pion exchange, one can show that ρ33 = 0 hence the π angular dis-
tribution is in 1+3 cos2 θ. In the case of ρ exchange contribution, ρ33 is expected to be different
from 0.

Fig. 1.7 – ρ33 parameter extracted from the pion angular distributions in the pp → npπ+

reaction [Wicklund et al., 1987]. The ∆++ is reconstructed by the (p, π+) pair.

The spin density matrix coefficients have been extracted from the π+ angular distribution
in pp → npπ+ reaction using Effective Mass Spectrometer at Argonne from 1.18 to 1.98 GeV/c
[Wicklund et al., 1986, 1987]. The ρ33 value has been found to have a smooth distribution as
a function of the ∆ production angle (see fig. 1.7). For forward emitted ∆++ the ρ33 is found
to be equal to 0.16 ± 0.03, which results in an anisotropy coefficient A = 0.66 + 0.29 − 0.25,
smaller than the value 3 derived from the OPEM.

The evidence is in agreement with the investigation by the same reaction but at higher en-
ergy 2.8 GeV/c performed at BNL using a bubble chamber [Bacon et al., 1967]. In this study
they showed an anisotropic pion angular distribution and obtained ρ33 = 0.14 ± 0.03, so
A = 0.85 + 0.32 − 0.28 (see fig.1.8). The same study also performed at BNL at 2.5 GeV/c
had been reported in [Eisner et al., 1965], that they found A ≃ 0.55 but announced the fit qual-
ity was not satisfactory. In addition, Shimizu et al. [Shimizu et al., 1982] also mentions ρ33 ∼ 0.2.

18



1.5. ∆(1232) RESONANCE PRODUCTION 19

It has to be noted that in these experiments only effective matrix elements could be derived,
considering that only one graph contributes, with excitation either of the projectile or of the
target. As we will see in section 3.2.3, this is valid only for the forward or backward angles, and
assuming that the ∆++ excitation is the dominant contribution.

Fig. 1.8 – Left : π+ angular distribution in (p, π+) reference frame (noted as cos θ) for three
regions of ∆++ production angles (noted as cos θprod) : a) 1.0 ≥ cos θprod > 0.9, b) 0.9 ≥
cos θprod > 0.8 and c) 0.8 ≥ cos θprod > 0.0. Right : ρ33 parameter extracted from the pion
angular distributions. Both are measured in the pp → npπ+ reaction at 2.8 GeV/c at Brookhaven
National Laboratory [Bacon et al., 1967].

As a conclusion, the analysis of the π angular distribution that came out with the previous
experiments was in agreement with an anisotropic ∆ decay, but with an anisotropy smaller than
expected from a pure OPEM. It has to be mentioned that also the spin observable was in dis-
agreement with the OPEM [Prout et al., 1996], while the yield and neutron angular distribution
were in good agreement with OPEM. Different types of interactions were tested to reconcile all
these data, π + ρ for example, with no real success [Dahl, 1995]. Note that in transport models,
the pionic decay of the ∆ resonance is taken isotropic. In our event generator, we implemented
an anisotropic angular distribution according to the results above.

19



20 CHAPITRE 1. INTRODUCTION

1.5.4 Teis fits

The Teis analysis [Teis et al., 1997] starts from the observation that, in the 1-3 GeV range,
pion production is mainly driven by the excitation of intermediate resonances. The contribution
of the ∆(1232), which is dominant for pion production at the lowest energies is taken from the
OPEM, which describes quite well the measured cross-sections, invariant mass distributions, and
angular distributions of the pp → npπ+ reaction at incident momenta around 1.5 GeV/c. The
available cross-section values for one or two pion production in p + p and p + n reactions were
used to fit the contributions of the different resonances, which are linked by isospin factors in
the different isospin channels (see fig. 1.9).

The systematics is based on [Baldini et al., 1988]. In the energy range of the p + p reaction
at 1.25 GeV, the data measured in the 1960’s with bubble chambers are taken into account
[Eisner et al., 1965, Bugg et al., 1964, Fickinger et al., 1962]. The point at

√
s=2.3 GeV, ap-

pearing higher than the latter ones in both ppπ0 and npπ+ channels, originates from nuclear
emulsion measurements at Birmingham [Hughes et al., 1957]. The KEK data, were not included
in the Teis systematics, although they were already available at that date. We will compare
our cross section measurements to a more up to date systematics in section 5.11.3. In transport
models, an extensive use of the resonance model is made to derive the baryonic resonance pro-
duction cross sections in p + p and p + n reactions.

(a) (b)

Fig. 1.9 – Cross sections of pp → ppπ0 (a) and pp → npπ+ (b) reactions used by Teis et al.

1.5.5 Isospin correlations

In p + p reactions, the amplitudes for pp → p∆+ and pp → n∆++ differ only by the product
of the isospin coefficients at each vertex (see appendix A). It results in the following relations
for two production channels :

σpp→p∆+ =
1

4
σpp→N∆

σpp→n∆++ =
3

4
σpp→N∆

(1.3)

and the following branching ratios for the ∆ → Nπ channels are :
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1.6. HADES RESULTS IN P + P AND P + N EXPERIMENTS 21

∆+ → pπ0 (2/3)

∆+ → nπ+ (1/3)

∆++ → pπ+ (1)

(1.4)

As a consequence, if the π production proceeds only through ∆ excitation, the cross sections
of the two isospin channels in p + p reactions are correlated by :

σpp→npπ+ ∼ 5 σpp→ppπ0 (1.5)

1.6 HADES results in p + p and p + n experiments

In this section, I would like to discuss the di-electron production investigated by HADES
with the p + p and d + p5 experiments at 1.25 GeV. At this energy, the di-electron produc-
tions can come from π0 Dalitz decay (π0 → γe+e−), ∆(1232) Dalitz decay (∆+ → pe+e−) and
nucleon-nucleon bremsstrahlung (NN → NNe+e−). As seen in fig. 1.10 for an incident energy
at 1.25 GeV, according to the OBE model, the ∆ graphs are widely dominant in the case of the
p + p reaction, while the NN bremsstrahlung becomes more important for the p + n reaction.
This is due to the isospin effects for the charged mesons exchange and the different interference
effects in p + p and n + p channels [Kaptari and Kämpfer, 2009].

Fig. 1.10 – OBE prediction for di-electron invariant mass distribution in p + p (left) and p + n
(right) collisions at 1.25 GeV : the dashed and dotted curves present the contribution from
the ∆ graphs and nucleon graphs respectively and the solid line presents the full calculation
[Kaptari and Kämpfer, 2006].

Figure 1.11 shows the di-electron mass spectra measured in the p + p and quasi-free n + p
reactions by HADES compared to Pluto simulation (detailed information and ingredients of
simulations can be found in the PhD thesis of T. Galatyuk [Galatyuk, 2009]) with π0 inclusive
cross sections and the ∆ contribution taken from the Teis fits (see table 1.4). In the simulation,
the π0 and ∆ Dalitz decay are parameterized using the QED formalism and acceptance cuts are

5The d + p run was performed in May 2007, using a deuteron beam of 1.25 A GeV kinetic energy shooting on
a liquid hydrogen target. The main goal of this experiment was to measure the e+e− pair emission in quasi-free
n + p collisions which is expected to be sensitive to the np bremsstrahlung process. The Forward Hodoscope Wall
covering a polar angle between 1-7o was used in this experiment to measure the spectator proton, in which way
we could suppress the p + p interactions and measure quasi-free n + p interactions [Lapidus].
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Fig. 1.11 – Di-electron mass distribution measured in p+p (a) and quasi-free n+p (b) reactions
at 1.25 GeV compared with Pluto simulations. The experimental data are shown by black dots
and the systematical errors (constant in whole mass range) are indicated by red horizontal bars
and statistical errors by black vertical bars. In simulation, different sources are presented by
different lines : Red dotted line π0 Dalitz decay, blue long-dashed line : η Dalitz decay, black
dashed line and long-dashed line : ∆ Dalitz decay, shaded area : the enhancement due to the
N −∆ transition form factor. In the mass region above π0 the transport calculations, e.g. total
cocktail with K&K OBE [Kaptari and Kämpfer, 2006] (black solid line) and total cocktail with
S&M OBE [Shyam and Mosel, 2003] (black dashed-dotted line) are also shown.

applied before comparing to the measured spectra.

Both reactions show a good agreement in the low mass region where the π0 Dalitz decay is
dominant. It confirms the normalization and analysis procedures. In the case of the p+p reaction,
the spectrum can be explained by a simple sum of the π0 Dalitz decay and ∆ Dalitz decay. An
even better agreement can be found when the N −∆ transition form factor ([Wan and Iachello,
2005]) is included. The grey zone shows the effects of the form factor, a more important effect
in the high mass region has been found. These data show the sensitivity to the N−∆ form factor.

p + p channel Cross section [mb]

σpp→ppπ0 =
2

3
σpp→p∆+ 4

σpp→ppπ0π0 0.1
σpp→pnπ+π0 0.5

sum π0 in p + p 4.6

Tab. 1.4 – Cross sections for exclusive channels of π0 production in p+p reactions in [Teis et al.,
1997].

The shape of the spectrum changes dramatically when going from p + p to p + n reactions.
In p + p reactions, the di-electron yields from the ∆+ Dalitz decay and the π0 Dalitz decay are

correlated by the isospin relation σpp→ppπ0 =
2

3
σpp→p∆+ (see table 1.4), neglecting the two-π
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1.7. MOTIVATION OF EXCLUSIVE PION PRODUCTION EXPERIMENTS 23

processes and assuming that all the π0 are produced via the ∆+ resonance. Thus in the n + p
case, the π0 contribution is expected to be 2 times higher than in p + p because π0 come from
∆+ and ∆0 with equal weights (see equation 1.6).

σpp→p∆+
→ppπ0 = σnp→n∆+

→npπ0

= σnp→p∆0
→npπ0

(1.6)

This is in agreement with the experimental result. But in the mass range between 0.15 and
0.35 GeV/c2, the data are even a factor 9 higher in the case of n + p reaction. Even with
the η contribution and the N − ∆ transition form factor, the n + p case can not be explained
[Agakichiev et al., 2010].

For the mass range above the π0 Dalitz decay, the OBE calculations (OBE K&K
[Kaptari and Kämpfer, 2006] and OBE S&M [Shyam and Mosel, 2009]) are also compared to
the data. They are expected to provide a more accurate description than the resonance model
because they take into account all graphs involving the ∆ resonance or nucleons as shown in
section 1.1.4. The predictions in OBE K&K overestimate p+p, while the one in OBE S&M give
pretty good description of the data. However, both calculations fail to explain the n+p data even
when the nucleon-nucleon bremsstrahlung is included. This is considered as new ”HADES puz-
zle”. Nevertheless, the quite recent results from [Shyam and Mosel, 2010] improve the situation.
An implementation of the π form factor does not change much the p+p spectrum, but brings the
calculated cross sections closer to the data in the higher di-electron mass region in the n+p case.

The di-electron production has been studied in the inclusive channel (NN → Xe+e−). Mean-
while, the exclusive channel analysis is in progress using the pe+e− events measured in these
p + p and p + n experiments at 1.25 GeV. The pp → ppe+e− reaction is selected using the
missing mass. In this case, pe+e− spectra and other differential spectra can also be used to
identify the ∆ resonance excitation. For this analysis, the resonance model is used. Due to the
selection of the proton, the measured yields and distributions are in this case also sensitive to
the proton distributions. We will present the results from the on-going analysis in section 6.2. A
similar analysis has also been started in p + n reactions with pne+e− events, where a stronger
contribution of pn bremsstrahlung is expected than in p + p.

1.7 Motivation of exclusive pion production experiments

With the HADES p+ p and p+n experiments, it is possible to analyse the pionic channels :
i.e. pp → npπ+, pp → ppπ0, pp → ppπ+π−, np → ppπ−, np → ppπ−π0.

The interest is to have consistency checks of the different channels measured with HADES.
It allows also to validate the resonance model [Teis et al., 1997], used for the di-electron analysis
and more specifically its dominant feature : the excitation of the ∆(1232) resonance within the
OPEM. Pionic and di-electron channels are indeed linked by the π0 Dalitz decay (π0 → e+e−γ)
and ∆ Dalitz decay (∆+ → e+e−p). Thanks to the high statistics achieved in the pion channels,
the measured spectra can also be useful to test more sophisticated models.

In this PhD thesis, the analysis of exclusive one-pion production channel pp → npπ+ will be
presented. The same studies as performed in previous experiments, such as ∆ mass distribution
and angular distributions measured with the HADES p + p experiment at 1.25 GeV will be
shown in detail in this document. The HADES data will be compared with a simulation based
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on OPEM for ∆ production and the sensitivity to other resonances will be tested as well.
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Chapitre 2

The HADES spectrometer

The HADES detector, as shown in fig. 2.1, consists of 6 identical sectors covering the full
azimuthal range and polar angles from 18o to 84o with respect to the beam direction. Each
sector contains : A Ring Imaging CHerenkov (RICH) detector used for electron identification ;
two sets of Mini-Drift Chambers (MDC) with 4 modules per sector placed in front and be-
hind the magnetic field to determine momenta of charged particles ; Time-Of-Flight detectors
(TOF/TOFINO) and Pre-Shower detector improving the electron identification. For reaction
time measurement, a START detector is located in front of the target.

beam
RICH

MDC I/II

MDC III/IV
TOF

TO
FIN

O

Pre-Shower

target

START

Mag
ne

t

Fig. 2.1 – Schematic layout of the HADES detector.

A di-electron invariant mass resolution at the ω peak of ∼ 2.7% and a momentum resolu-
tion for protons of 4% can be achieved. The first level trigger is obtained by a fast multiplicity
signal coming from the TOF/TOFINO wall, combined with a reaction signal from the START
detector, while the second level trigger is made by using the information from the RICH and
Pre-Shower to enrich the recorded events with lepton candidates. The HADES detector is de-
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signed for di-electron spectroscopy, but because of its large acceptance and good mass resolution
it is also suited for the detection of hadrons.

In the following sections, the target used for the p + p reactions as well as each sub-detector
system will be explained in more details.

2.1 Target

In the p+p experiment, the liquid-hydrogen (LH2) target, which has been developed at IPN
Orsay, was used (see fig. 2.2). The target consists of a 5 cm long cylinder with a diameter of 2.5
cm which is filled with LH2 at atmospheric pressure and a temperature of 20 K. The liquid is
contained in a vessel built out of Mylar foils of 100 µm thickness, glued together. The thermal
insulation is achieved using a carbon fiber housing, 4 cm in diameter and 0.5 mm in thickness,
placed around the vessel and covered by 10 layers of 6 µm thick aluminized Mylar which is
super-insulation. The forward endcap is made of a 100 µm thick Mylar foil.

Fig. 2.2 – The liquid hydrogen target vessel with a diameter of 2.5 cm. The entrance window is
glued on a stainless steel cylinder.

2.2 The Ring Imaging Cherenkov detector

The HADES Ring Imaging Cherenkov detector (RICH) (see fig. 2.3) constitutes the inner-
most part of the spectrometer and is built to identify e+e− pairs.

The detector is designed based on the Cherenkov effect, which is the electromagnetic radia-
tion emitted when a charged particle passes through a transparent medium of refraction index
n at a speed greater than the speed of light in that medium (so v > c/n). The opening angle
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between the emitted cone of light and the particle direction is given by :

cos θ =
1

nβ
,

β =

√

1 − 1

γ2
,

(2.1)

where θ is the opening angle, β and γ are the velocity and Lorentz factor of the particle respec-
tively.

In the energy range of our experiment, i.e. 1-2 GeV, electrons have velocities close to the
speed of light, while most of the hadrons have much lower velocities. By choosing a dielectric
medium with an appropriate refraction index, the Cherenkov effect becomes a reliable tool to
discriminate leptons from hadrons.

Fig. 2.3 – Schematic layout of the RICH, consisting of a Carbon shell mirror, a CaF2 window
and a photon detector.

As one of the most important components, the radiator gas in HADES RICH detector is
chosen as C4F10. It has a refraction index of n = 1.00151 and the corresponding Cherenkov
threshold is γ > 18.2. It means that, to produce the Cherenkov light, the velocity β of a particle
should be greater than 0.9985, which corresponds to : 0.009 GeV/c for an electron, 2.5 GeV/c
for a pion and 17 GeV/c for a proton. In the HADES experiment energy range, the momentum
of electrons is much higher than the 0.009 GeV/c threshold and most of the protons and pions
have momenta significantly below the threshold. Just to give an idea, in p + p collisions at 1.25
GeV, the maximum momenta are about 2 GeV/c for protons and 1 GeV/c for π+. The radiator
gas offers also high transparency to the wavelengths down to λ ≥ 145 nm, which is well suited
since the produced photons are mostly at ultra-violet frequencies.

The spherical carbon mirror is placed downstream of the gas radiator and reflects the
Cherenkov light (average reflectivity is ∼ 80%) to the photon detector which is able to detect a
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28 CHAPITRE 2. THE HADES SPECTROMETER

signal photon providing an information about position. Typically an electron with a momentum
of 0.1 GeV/c produces about 110 photons along its trajectory in the radiator.

2.3 The tracking system

The tracking system of HADES consists of a toroidal field provided by the superconducting
coils and four planes of low-mass mini drift chambers (MDC) (see left panel of fig. 2.4). It allows
to reconstruct the particle trajectories in a large solid angle (θ from 14o to 86o) and to determine
the particle momentum with a resolution of △ p/p ∼ 4% for protons.
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Fig. 2.4 – Schematic layout of the HADES tracking system. Left : Arrangement of the MDC
chamber with respect to the magnetic coils. Right : View of the six anode wire frames inside a
HADES MDC, with the respective wire angles.

2.3.1 The superconducting Magnet

The Iron-Less Superconductive Electromagnet (ILSE) [Bretz, 1999] consists of 6 supercon-
ducting coils, producing an inhomogeneous magnetic field up to a maximum value of 0.7 T
within the acceptance region. This value corresponds to

∫

B · dl ≃ 0.3 T · m, at θ = 20o

∫

B · dl ≃ 0.12 T · m, at θ = 70o
(2.2)

where
∫

B · dl is the integrated magnetic field. Moreover, a field free region is required (below
5 · 10−3 T) at the position of the RICH and the TOF/TOFINO detectors.

At maximum field value, the transverse momentum kick pk ranges between 0.03 and 0.1
GeV/c, where pk is the momentum difference between the incoming and outgoing momentum
vectors in the plane perpendicular to the field. For example, for a particle of charge ±1 having
momentum p = 1 GeV/c and emitted at θ = 20o, its momentum kick pk amounts to 0.1 GeV/c
(so the deflection angle is △ θ = 5.7o).
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2.3. THE TRACKING SYSTEM 29

2.3.2 The MDC detector

The tracking is performed by 24 trapezoidal Mini-Drift Chambers(MDC) divided into 6 iden-
tical sectors of 4 planes. The sectors are symmetrically arranged around the beam direction. In
each sector, 4 planes are placed, two in front of and two behind the magnetic field with increasing
size. All the 24 chambers together provide a polar coverage between 14o to 84o and nearly full
azimuthal coverage.

Each chamber is composed of six sense/field wire layers (called anode planes) oriented in
different stereo angles from the inner layer to the outer : +40o, −20o, +0o, −0o, +20o, −40o

in order to have a maximum spatial resolution (see right panel of fig. 2.4). There are also seven
cathode wire layers (called cathode planes), so that each sense/field wire layer is in between two
cathode planes. For MDC IV, the gap between anode plane and cathode plane is 5 mm. The
space between anodic and field wires defines a drift cell. All four chambers contain about 1100
drift cells each with a size in average varying from 5 × 5 to 14 × 10 mm2 from plane I to plane
IV to achieve a constant detector occupancy.

In each chamber, the windows consist of aluminized Mylar foils. Inside the chamber, a He-
lium :Isobutane (= 60 :40) gas mixture is circulated during operation with an overpressure below
1 millibar. A new gas mixture based on argon (Argon :Isobutane = 84 :16) has been tested and
is foreseen for the next coming experiments.

When a particle crosses these drift cells, it ionises the gas and produces electron/positive ion
pairs along its trajectory. The electrons migrate towards the anode wires and produce further
ionisation especially close to the anode wire. The collected charges induce a signal on the anode
wires. For each hit wire the corresponding drift times depend on the minimal distance of the
particle trajectory from the wire. Note that the relation between drift time and the drift distance
is not linear in our case due to the fact that the electric field is not constant in the drift cells
and it is calculated by a Garfield simulation [Markert, 2005].
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Fig. 2.5 – Left : View of the one HADES Mini-Drift-Chamber, MDC plane IV. Right : An
example of measured tension of sense wire of anode plane.
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30 CHAPITRE 2. THE HADES SPECTROMETER

The IPN Orsay was responsible for the construction of the MDC plane IV during 2001-2006.
Those planes measure 280 cm high and 230 cm long from the bottom and are the biggest MDC
chambers among the 4 HADES MDC planes (see left panel of fig. 2.5). Due to the unusual big
size of the chamber, a lot of difficulties were addressed during construction and finally solved.
For example, a careful winding is realized to obtain the designed tension and to make sure in
the meantime that even for the longest wire we are well below the instability limit of the wire.
The diameter of the gold-plated tungsten sense wire was chosen to be 30 µm in order to reduce
the breaking probability of the wires. A carbon bar was added to maintain the wire tension at
the value of 110 N after mounting to the frame.

In spring 2009, we repaired one of the Orsay chambers (MDCIV-Sector6) in which a short-
circuit had been found. Taking advantage of this repair action, a systematic study of tension
stability for all the layers in this chamber has been performed. Unfortunately this measurement
is realized when the chamber was mounted to a frame for reparation which is different from the
one used for the construction. It is thus impossible to identify a possible global tension loss. It
is however interesting to check the homogeneity of the wire tension after 5 years of operation.
Figure 2.5 shows an example of the measured tensions of anode plane 0o as a function of wire
number. Apart from some exceptions (for example wire No.172), the distribution of tension is
quite homogeneous. A detailed investigation of the positions at both ends of each wire was also
made for one layer and the distribution was found Gaussian-like with a σ of about 50 µm. After
reparation, the chamber can operate stably with a high voltage of up to 2.6 kV in air and at 2.4
kV with the gas mixture (Helium :Isobutane = 60 :40). Currents of the order of 15 nA per layer
(without beam) at the maximum high voltage were measured.

2.4 The Multiplicity Electron Trigger Array system

The Multiplicity Electron Trigger Array (META) system is positioned downstream behind
the outer MDCs and used for particle identification and triggering. The system is formed by two
sets of time-of-flight detector (TOF and TOFINO) and an electromagnetic shower detector.

2.4.1 The Time-Of-Flight detector

For the time-of-flight measurements in the polar angle region from 44o to 88o, the TOF de-
tector is used. Following the hexagonal geometry of the whole spectrometer, the TOF detector
is divided into six sectors (left panel of fig. 2.6). Each sector consists of 64 scintillator rods (384
rods in total) coupled on both ends to photo-multipliers (PMT). The rod length increases while
ranging from the smaller to larger polar angles. This geometry allows to have a finer granularity
in the forward polar angle region, where the multiplicity of produced charged particles is higher,
to reduce the probability that two particles hit the same rod. The time resolution is about 150 ps.

From the measured signals the following information can be extracted : the time-of-flight
(ttof ) of particles, the hit position on the rod (x), and the energy deposited in the rod (△ E)
with following formulas :

ttof =
1

2
(tleft + tright −

L

vgroup
),

x =
1

2
(tleft − tright) · vgroup,

△ E = k ·
√

AleftAright · eL/2λat

(2.3)
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where tleft and tright is the time measured on the left and the right side of the rod corresponding
to the time between the reaction and the readout of the signal, vgroup is the group velocity in
the rod (average velocity of light in the rod), L is the length of the rod, Aleft and Aright are the
signal amplitudes at the left and the right ends of the rod, λat is the light attenuation length of
the rod and k is a constant.

For time-of-flight measurements, the region of polar angle below 45o was covered by a low
granularity system called TOFINO. It is divided into six sectors each consisting of four scintil-
lator pads (see right panel of fig. 2.6), arranged radially with respect to the beam axis.

The basic principle is the same as for the TOF detector. In the case of the TOFINO detector,
only one end is coupled to a PMT, so there is no information about the hit position. But directly
behind the TOFINO detector, the Pre-Shower detector (will be described in the next section) is
mounted, which provides the coordinate information of the particle hit on the paddle (x). The
time-of-flight (ttof) can be calculated using the following equation :

ttof = t − x

vgroup
(2.4)

where t is interval between the reaction and the arrival of the light pulse at the PMT, vgroup the
light group velocity in the pad and x the distance from the particle hit position to the PMT.
The time resolution of TOFINO is about 420 ps, worse than TOF.

A Resistive Plate Chamber (RPC) wall has been installed in 2010 to overcome the shortcom-
ings of the TOFINO. The new RPC detector replaces the TOFINO detector and will operate
for the future experiments.

Fig. 2.6 – Schematic view of the Left :TOF and Right :TOFINO detector (one sector only).

2.4.2 The Pre-Shower detector

In the lower polar angle region, the separation of electrons from protons by time-of-flight
measurements is more difficult, due to the higher momenta of hadrons. In order to improve the
lepton/hadron discrimination, a detector of electromagnetic showers (Pre-Shower) is used.
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32 CHAPITRE 2. THE HADES SPECTROMETER

Fig. 2.7 – Side view of the Pre-Shower detector (one sector) with an example of electromagnetic
shower.

The Pre-Shower detector consists of a stack of three trapezoidal wire chambers (pre-chamber,
post1-chamber, post2-chamber), separated by two lead converter plates. Each cathode plane is
further divided into individual pads. A charged particle passing through the gas chambers pro-
duces an ionisation avalanche, with electrons drifting towards the closest anode wire ; the cloud
motion induces a positive charge on the nearby cathode pads, connected to charge-sensitive
preamplifiers. The integrated charge is proportional to the avalanche charge, and an integration
over several pads around the pad with the highest charge value (local maximum) has to be
performed, in order to obtain the complete charge of the electromagnetic shower. By comparing
the integrated charge of the same track in different layers it is possible to distinguish electro-
magnetic showers from hadronic tracks. The replacement of Pre-Shower detector by a lead glass
calorimeter is foreseen in the near future.

2.5 The trigger system

A two level trigger system is used in the HADES experiments :

– 1st level trigger : The first level trigger (noted as LVL1) consists of a fast hardware selection
of central collisions, by measuring the hit multiplicity in META system. It is possible to
apply multiplicity selections in TOF and TOFINO separately and sectorwise, in order to
select only interesting decay channels, which is used for example in elementary reactions,
such as p + p collisions.

– 2nd level trigger : The second level trigger (noted as LVL2) is based on an online search
for lepton candidates in the event. (ring in RICH and META matching)

2.5.1 Principle of trigger system

The events accepted by the LVL1 trigger decision are sent to the matching unit board and
processes with the following options :

- If the events contain a lepton candidate, they are accepted by the LVL2 trigger and then
are all written to the file for inclusive di-electron analysis. They are called LVL2 events.
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- Disregarding whether the events contain a lepton candidate or not, all the events are sent
to a downscaling box which reduces the number of events by a corresponding factor (called
LVL1 dsf). They are finally recorded in the files, for hadronic analysis and normalization
factors. They are called downscaled LVL1 events.

Fig. 2.8 – Sketch of the event selection used for data acquisition.

The downscaled LVL1 events are recorded because we are also interested in events which
contain hadrons. However, the rate of hadronic events is so high that their numbers has to be
reduced.

Fig. 2.8 gives a schematic explanation of the event selection used for data acquisition. A
first selection of the events is done by the LVL1 trigger (yellow boxes), and they are sent to
the matching unit afterwards where the downscaling factor is 4. This means that one event out
of four is stored (event number 1, 5, 9, 13, ...) (labeled by blue boxes), no matter the LVL2
trigger decision. In the meantime, all the events with a recognized lepton pair are stored as well
(labeled orange boxes). It can happen that an event can be at the same time downscaled by
the LVL1 trigger and be accepted by LVL2 trigger, like for instance the event number 13 in the
example. If we want to have the total number of the LVL1 trigger events, we must multiply the
number of downscaled LVL1 events (4) by the downscaling factor (4). In this case, we obtain 16
triggered events against 7 which are effectively stored to file. This means that in the example
we found 4 lepton pair candidates by storing only 7 events instead of 16. In this particular case,
we have roughly saved half of the disk space, and half of the time needed for the data processing.
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34 CHAPITRE 2. THE HADES SPECTROMETER

For the p + p run in April 2006, the LVL1 downscaling factor is set to 5.

2.5.2 Experimental conditions set in the p + p run at 1.25 GeV

In order to favour the different reaction channels, different trigger types are used for the
LVL1 with an additional corresponding downscaling factor (called trigger box dsf) . As listed in
table 2.1, three different trigger settings were used.

Trigger type LVL1 dsf Trigger box dsf

M3 5 1

M2 Opp. Sec. & TS (only TOFINO) 5 64

Tab. 2.1 – Different LVL1 trigger types in p + p run at 1.25 GeV in April 2006.

The M2 Opp. Sec. & TS (only TOFINO) trigger required two charged particles detected in
opposite sectors and asked in addition that one of the charged particles hits the TOFINO detec-
tor as a Time Signal (TS). This trigger is optimized for the detection of p + p elastic scattering
which will be used for normalization of the final results (see section 4.4), but it is also used for
other hadronic channel analyses e.g. pp → ppπ0 and pp → npπ+ which will be discussed in detail
in this thesis. Since the cross section of the elastic channel is high, a trigger box dsf equal 64 is set.

The M3 trigger requiring at least three charged particles detected in the META is used to
favor an exclusive reconstruction of a four-prong final state (e.g. of the type ppe+e−), which
allows an exclusive study of the ∆ Dalitz decay (see chapter 6). As it is the main goal of this
experiment and the corresponding events are rare, no downscaling is set.

2.6 Proton-proton reaction at 1.25 GeV running conditions

During the April 2006 experiment we used a proton beam of 1.25 GeV kinetic energy, with
an intensity of up to 107 particles per second. The target consisted of a 5 cm long Mylar vessel,
filled with liquid hydrogen with about 2 · 1023 protons/cm2. It resulted in an interaction proba-
bility of about 1%.

The detector setup consisted of the RICH, META detectors which have been fully installed.
While the tracking system was partially operational : the inner MDCs were working in each
sector, but MDC III, sector 0, sector 1 and MDC IV, sector 5 were not turned on. Data were
taken with a current of I = 2497 A, corresponding to 72% of the maximum strength of the
magnetic field, which is optimized for the best detection of both electrons and protons at 1.25
GeV. The system of START-VETO detectors was not used in this experiment.
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Chapitre 3

Simulations

3.1 Pluto - Monte-Carlo simulation tool

The simulation work in this thesis is performed with the Pluto event generator [Froehlich et al.,
2007, 2010]. The Pluto event generator is a ROOT-based [Brun and Rademakers, 1997] package
which allows to describe the production of particles in elementary reactions and their hadronic
and leptonic decays. Moreover, it allows also to simulate heavy-ion induced reactions by using a
fireball model (thermalized source) and tabulated production cross sections. The development
of Pluto was mainly motivated by the physics program of the HADES experiment and its goal
is to provide reference spectra based on the known experimental information for the model
predictions.

3.2 Inputs for simulation

We will give in this section the ingredients for the simulation of pionic channels in p + p
reactions at 1.25 GeV.

3.2.1 Cross sections

Isospin channel Cross section Outgoing Cross section
channel

Elastic scattering 22 mb pp → pp

1-pion production 23.4 mb pp → npπ+ 19.4 mb
pp → ppπ0 4.0 mb

2-pion production 0.951 mb pp → pnπ+π0 0.515 mb
pp → ppπ0π0 0.105 mb
pp → ppπ+π− 0.241 mb
pp → nnπ+π+ 0.09 mb

3-pion production 0.00195 mb pp → ppπ0π0π0 0.00032 mb
pp → ppπ+π−π0 0.00163 mb
pp → pnπ+π+π− 0 mb

Di-lepton production 0.0002227 mb pp → ppe+e−

Tab. 3.1 – Main pion and di-electron production channels in the p + p reaction at 1.25 GeV
[Teis et al., 1997].
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Table 3.1 gives the possible reactions and the corresponding cross sections in p + p collisions
at 1.25 GeV. The main contributions come from the elastic scattering which has a cross sec-
tion equal to 22 mb and therefore represents 47% of the total cross section on the one hand
and on the other hand the one-pion production channels with final states npπ+ and ppπ0. The
multi-pion production is much less probable. The di-lepton production channel is even more rare.

The simulation is performed for the one-pion production channels pp → ppπ0 and pp → npπ+.
The cross sections of involved resonant processes are taken from Teis [Teis et al., 1997], as listed
in table 3.2.

Outgoing channel Cross section Production processes Cross section

pp → npπ+ 19.4 mb pp → n∆++ 17.0 mb
pp → p∆+ 1.9 mb
pp → pN∗ 0.34 mb

pp → ppπ0 4.0 mb pp → p∆+ 3.8 mb
pp → pN∗ 0.2 mb

Tab. 3.2 – Channels used for the simulation of exclusive one-pion production in p + p reaction
at 1.25 GeV.

3.2.2 Two-step generation

In the Pluto generator, the process of pion production via a resonant state consists of two-
steps : the resonance production and the resonance pionic decay. In the following sections, we
will describe the two-step generation procedure in the case of the ∆ resonance (pp → N∆ and
∆ → Nπ), which is the main process at 1.25 GeV and will be studied in this PhD thesis.

3.2.3 Production of ∆ resonance

In the Pluto generator, the cross section of ∆ production at a fixed mass m is factorized as :

d2σ

dm dt
=

dσ

dt
ρ(m) (3.1)

where :

- ρ(m) is the relativistic Breit-Wigner distribution of the ∆ mass ;

-
dσ

dt
is the differential cross section of the NN → N∆ process.

More precisely, ρ(m) is in the form

ρ(m) = 2m[
1

π

mΓ(m)

(m2 − m2
∆)2 + m2(Γ(m))2

] (3.2)

where

Γ(m) = Γ∆
m∆

m

( k

k∆

)3(k2
∆ + δ2

k2 + δ2

)2
(3.3)

with

- m∆ = 1232 MeV/c2, the resonance mass ;
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- Γ∆ = 120 MeV/c2, the resonance width ;

- k and k∆ = 229 MeV/c are the three-momenta of the pion in the reference frame of a ∆
resonance with mass m and m∆, respectively.

The factor
( k

k∆

)3
is related to the fact that the ∆ resonance is a N −π wave of angular momen-

tum l = 1. The effect is a very large increase of the width as a function of the ∆ resonance mass,

while the cut-off factor
(k2

∆ + δ2

k2 + δ2

)2
takes into account the ∆ off-shell correction. This factor is

taken from Moniz with δ = 300 MeV/c, and was adjusted to reproduce the N − π phase shifts
[Moniz and Sevgen, 1981]. A slightly different parametrization is used in [Dmitriev and Sushkov,
1986]. The influence of this factor on the mass and angular distributions has been studied in the
PhD thesis [Morinière, 2008] and it has been found to be small.

Assuming a fixed mass of the ∆, the differential cross section of the processes NN → N∆
is based on the One-Pion Exchange Model (OPEM) [Dmitriev and Sushkov, 1986] and can be
written in the form of :

dσ/dt =
1

64πI2
|MNN→N∆|2 , (3.4)

where :

- 1
64πI2 is a constant related to the beam momemtum and the center of mass energy of the
reaction ;

- t = q2 = (k1−k3)
2 is the four-momentum transfer squared of the direct graph (fig. 3.1(a)) ;

- |MNN→N∆|2 is the NN → N∆ transition amplitude squared summed over the spins of
the final particles and averaged over the spins of the initial particles ;

- I =
√

(k1k2)2 − M4 is the flux factor.

(a) (b)

Fig. 3.1 – Direct and exchange graphs for the ∆ production in p + p collisions with the OPE
model.

The direct π−exchange amplitude squared result is :

1

4

∑

λ1λ2λ3λ4

|MNN→N∆(direct)|2 =
(gπf∗

π

mπ

)2 F 4(t)

(t − m2
π)2

× t{t − (m∆ − mN )2} [(m∆ + mN )2 − t]2

3m2
∆

(3.5)

where

- gπ = 13.6 is the πNN coupling constant ;

- f∗

π is the πN∆ coupling constant, the value is 2.202 and corresponds to a Γ∆ = 120
MeV/c2 ;
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- F (t) is the form factor of the πN∆ vertex. It is in the form of F (t) =
Λ2

π − m2
π

Λ2
π − t

, where

mπ is the π mass and Λπ = 0.63 GeV is called the cut-off parameter. F (t) = 1 when
the exchanged π is on-shell (t = m2

π) and F (t) < 1 when the exchanged π is off-shell. In
addition, F (t) strongly cuts the four-momentum transfer squared −t ≫ Λ2

π.

In the same way, the expression of the exchange graph (fig. 3.1(b)) can be obtained by changing
momentum transfer squared t to u = q2 = (k3 − k2)

2.

The interference between direct and exchange graph is of the form :

1

4

∑

λ1λ2λ3λ4

∣

∣M+(direct)M(exchange) + M+(exchange)M(direct)
∣

∣

= (
gπf∗

π

mπ
)2

F 2(t)F 2(u)

(t − m2
π)(u − m2

π)

× 1

2m2
∆

{ [tu + (m2
∆ − m2

N )(t + u) − m4
∆ + m4

N ][tu + mN (m∆ + mN )(m2
∆ − m2

N )]

×1

3
[tu − (m∆ + mN )2(t + u) + (m∆ + mN )4][tu − mN (m∆ − mN )(m2

∆ − m2
N )] } .

(3.6)

Taking the pp → n∆++ reaction at 1.25 GeV as an example, the final results generated
from Pluto are shown in fig. 3.2. The mass distribution is slightly asymmetric. This is due to
the effect of the mass dependent width, which is however compensated by the cut-off factor
(k2

∆ + δ2

k2 + δ2

)2
. The strongly forward and backward peaking angular distribution is characteristic

of the peripheral character of the one-pion exchange. Both distributions give a nice description
of existing data. An example was shown at an incident beam momentum (plab = 1.66 GeV/c)
slightly lower than in our experiment on fig. 1.6.
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Fig. 3.2 – Left : ∆ mass distribution and Right : neutron angular distribution in the p + p
center-of-mass system in pp → n∆++ reaction in Pluto simulation.

Fig 3.3 shows the ratios of amplitudes of direct and exchange graphs as function of the neu-
tron angular distribution in the p + p center-of-mass system. We can see that the direct term
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Fig. 3.3 – The ratio of direct graph (red circles), exchange graph (green rectangles) and inter-
ference (blue triangles) to total amplitude as a function of cos θCM

n .

(red circles) is dominant for the backward going ∆ (so forward going neutron), while the ex-
change term (green rectangles) is symmetric with the direct one with respect to cos θCM

∆++ = 0 (so
cos θCM

n = 0), i.e. dominant for forward going ∆’s (so backward going neutron). The interference
plays an important role especially in the intermediate angular region, where it contributes up
to 25% of the total cross section.

3.2.4 Parametrization of the ∆ decay angular distribution

In Pluto, the pion angle θ in the processes ∆ → Nπ is sampled with respect to the momen-
tum transfer in the reference frame where the excited nucleon is at rest. As shown in (fig. 3.4),
q is the momentum transfer between the nucleon and ∆ resonance and θ is the quantity we are
interested in.

Fig. 3.4 – Sketch of the π angle in the ∆ pionic decay process.

Neglecting the φ-dependence, the π angular distribution in the ∆ rest frame is :
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dσ/d cos θ ∼ 1 + Acos2θ. (3.7)

where A is the anisotropy coefficient (see section 1.5.3).

Reference frame for π+ angle sampling

In the ∆ → Nπ process, in order to have the π angular distribution in the ∆ reference frame
as in equation 3.7, the z-axis has to be defined as the direction of the momentum transfer q
in the reference frame where the excited nucleon is at rest [Gottfried and Jackson, 1964, Dahl,
1995].

So, for the direct graph (fig. 3.1(a))

~q = ~p∆ − ~pptarget , (3.8)

and for exchange graph (fig. 3.1(b))

~q = ~p∆ − ~ppbeam
. (3.9)

In the literature, e.g. [Wicklund et al., 1987], another definition of this z-axis can be also
found. It is defined as the direction of the excited proton in the outgoing (p, π+) reference
frame. In fact, these two definitions are equivalent. We will demonstrate it in the following,
considering the process pp → n∆++ → npπ+. On can always write :

~ppexc + ~ppscatt = ~pn + ~ppπ+

~ppscatt − ~pn = ~ppπ+ − ~ppexc

(3.10)

where pscatt is the scattered proton and pexc is the excited proton. Since

~ppscatt − ~pn = ~ppπ+ − ~ppexc = ~q (3.11)

we have

~q = ~ppπ+ − ~ppexc (3.12)

If we stand in the (p, π+) reference frame, ~ppπ+ is 0 and we can deduce :

~q = −~ppexc (3.13)

Thus

~q // ~ppexc (3.14)

which means that the two definitions are equivalent.

One can also note, that depending on the papers, the direct graph is considered as cor-
responding to excitation from the target (e.g. in [Dmitriev and Sushkov, 1986]) or from the
projectile (e.g. in [Wicklund et al., 1987]).
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Anisotropy coefficient A

The formalism of the density matrix implies that the direction of the momentum transfer q
is known. But because of the mixture of direct and exchange graph in the production the proper
reconstruction of q is inaccessible.

However we can learn from fig. 3.3 that in the region of | cos θn| > 0.8, the contribution from
the direct graph or exchange graph is definitely dominant while the other two terms contribute
to the cross section by less than 10%. With the dominance of direct or exchange graph in these
regions, the direction of q is well defined. This is the reason why we considered only the results
obtained for | cos θn| > 0.8 in our energy range (see section 1.5.3) and use the π anisotropy
coefficient A = 0.66 found in this angular region as the anisotropy parameter.

This parameter is implemented in Pluto in the following way : for each mass and angle in the
∆ production process, the direction of the ∆ is sampled according to the direct and exchange
graph weights, neglecting the interference. The π angle is then sampled according to the distri-
bution : 1 + 0.66 cos2 θ.

In this way, we obtain the ∆ decay angular distribution shown in fig. 3.5 generated from
Pluto with anisotropy coefficient A = 0.66 and compare it to the isotropic decay (A = 0) and
the decay in a pure OPEM (A = 3). As expected, in this angular region (cos θn > 0.8), the

cos θ
(p,π)

π+ directly reflects the ∆ decay angular distribution.

)+π(p,
+πθcos
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Fig. 3.5 – ∆ decay angular distribution in ∆++ → pπ+ processes in the region of cos θn > 0.8
following different models : isotropic decay A = 0 (solid line), pure OPEM A = 3 (dotted line)
and Wicklund decay A = 0.66 (dot-dashed line).

3.2.5 N∗(1440) resonance production and decay in Pluto

The N∗(1440) resonance with spin 1/2 also contributes to the pp → NNπ processes.

In the Pluto simulation, the mass distribution of the N∗ is parameterized in a similar way to
the ∆ production. The resonance mass is set to be 1440 MeV/c2 and the width is 350 MeV/c2.
In the p + p reaction at 1.25 GeV, the center-of-mass energy of the system is

√
s = 2420 MeV.
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42 CHAPITRE 3. SIMULATIONS

This is why the N∗ mass can not be larger than 1480 MeV/c2 (see left panel of fig. 3.6).

The production angular distribution of the N∗ is treated to be isotropic in Pluto by de-
fault. In order to have a more realistic description, we have customized the distribution as in
[Huber and Aichelin, 1994] according to the One Boson Exchange model. The result is shown
in the right panel of fig. 3.6.
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Fig. 3.6 – Left : Mass and Right : angular distribution for N∗(1440) resonance in p+p reactions
at 1.25 GeV, in Pluto simulation.

3.3 Advantages and limitations of the used simulation with Pluto
event generator

The simulation work in this thesis is performed using the Pluto event generator. One should
first mention that Pluto is a very versatile event generator which can be used in different ways
[Froehlich et al.]. In particular, it can use differential cross-sections provided by theoretical mod-
els, as was done for the pp → ppe+e− channel. Here, we use a cocktail of processes which are
treated in a incoherent way. So there are following limitations :

– The interference effect between different processes with the same exit channel is not taken
into account.

– The cross sections are set for each process as a normalization factor independent of the
model used to sample the distributions. For example, in the case of pp → n∆++ the
OPEM is used for the four-momentum transfer distribution, while the cross-section can
be set independently.

– Only dominant graphs are taken into account. For example, emission of pions from graphs
involving only nucleons (non-resonant contribution) or emission of the pion before the ∆
excitation (pre-emission) are not taken into account.

– The production and decay process of the resonances is done in two-steps, assuming a
factorization of the cross sections. The polarization effects are however taken into account
although in a rather crude way (see section 3.2.4).

– As a consequence of the last point, the indistinguishability of the particles in the exit
channel is not taken into account properly. In the case of p + p collision, the pp → ppπ0

and pp → ppe+e− channel are concerned.
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The mentioned limitations (point 1,2 and 3) are maybe not so important in our specific
case, due to the dominance of the ∆ resonance. It will however be stressed many times that full
models should also be used.

The advantage of using the Pluto simulation tool is also obvious.
– Using simple models and parametrization, it allows a very fast and easy simulation.
– The design of Pluto provides also a convenient way to implement and customize the model

by users. The sensitivity to the parameters of the models can be therefore easily estimated.
– The data samples generated by Pluto can be directly filtered by the efficiency and ac-

ceptance matrices (will be introduced in next sections) to take into account the detector
geometry and working performance.
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44 CHAPITRE 3. SIMULATIONS

3.4 Kinematics of pp → N∆ → npπ+ process in 4π

3.4.1 Dalitz plot in 4π

The Dalitz plot, introduced in 1953 by R.H. Dalitz, is a scatter plot often used in particle
physics to present the kinematics of three-body decays. The variables on the axes of the plot
are the squares of the invariant masses of two pairs of decay products. Considering a process as
in fig. 3.7 (a), a system of center-of-mass energy

√
s gives 3 outgoing particles labeled 1, 2 and

3, with the mass mi and momentum pi.

The Dalitz plot for this process could be a plot for example of (m12)
2 versus (m23)

2. If the
process is a direct production from system

√
s to particles 1, 2 and 3, the distribution on the

Dalitz plot is uniform with kinematical limits :

(m1 + m2)
2 ≤ (m12)

2 ≤ (
√

s − m3)
2

(m2 + m3)
2 ≤ (m23)

2 ≤ (
√

s − m1)
2.

(3.15)
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Fig. 3.7 – (a) : Definitions of variables for three-body decays : the system of center-of-mass
energy

√
s gives 3 outgoing particles labeled 1, 2 and 3, with the mass m and momentum p.

(b) : Dalitz plot for a three-body final state npπ+ at 1.25 GeV. The solid curve indicates the
boundary of the 3-body kinematical limits and the maximum and minimum value of invariant
masses are given.

However, three-body decays are often dominated by resonant processes, in which the particle
decays into two decay products, with one of them decaying into two other particles. In this case,
the Dalitz plot will show a non-uniform distribution, with a peak around the square mass of the
decaying resonance.

Fig. 3.7 (b) gives an example of a Dalitz plot for a three-body final state at 1.25 GeV, where
the particles 1, 2 and 3 correspond to neutron, proton and π+ respectively. The invariant mass
squared of the (p, π+) pair is shown on the x-axis and the invariant mass squared of the (n, π+)
pair is on the y-axis. The solid line indicates the kinematical limits of this decay process, which
means the allowed region of invariant masses squared. The boundary in fig. 3.7 (b) is nearly
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3.4. KINEMATICS OF PP → N∆ → NPπ+ PROCESS IN 4π 45

symmetric with respect to the diagonal, since the masses of neutron and proton are quite close.

Fig. 3.8 shows a series of Dalitz plots corresponding to the reaction pp → npπ+ generated
from Pluto simulations. The panel (a) refers to the direct npπ+ production (noted as non-
resonant) simulated using phase space distribution. It is uniform as expected. Panels (b), (c)
and (d), show Dalitz plots obtained in the simulation when either the (n, π+) pair or the (p, π+)
pair corresponds to the decay of a resonance. The boundaries of the plots stay the same, and
the various distributions which reflect the intermediate resonance state can be seen. Taking (b)
as an example, where the (p, π+) is emitted from the ∆++(1232) resonance, a prominent peak
around 1.5 (GeV/c2)2 can be found right at the squared mass of ∆++(1232). The ∆+(1232) and
N*(1440) show up in (c) and (d).
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Fig. 3.8 – 4π Dalitz plot for events coming from Pluto simulation of pp → npπ+ reactions at 1.25
GeV. (a) through direct decay and via intermediate resonances, (b) ∆++(1232), (c) ∆+(1232)
and (d) N∗(1440).
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3.4.2 Momentum and polar angle distributions in 4 π

The momentum and polar angle distributions of detected particles, i.e. proton and π+, have
been studied as well, in the case of production via different resonances (∆++(1232), ∆+(1232)
and N∗(1440)) respectively.

Fig. 3.9 – Diagrams for ∆ production and decay process.

pp → n∆++ → npπ+

This reaction can be decomposed into two steps : first the two-body reaction pp → n∆++ ;
then the ∆++ produced in the first step decays into a proton and a π+. The proton carries most
of the energy of the resonance because its mass is close to the resonance’s and much higher than
the one of the π+. The two branches of proton in the left panel of fig. 3.10 reflect indeed the
forward and backward peaked ∆ production angular distribution.

In each branch, the events are distributed in a broader region, with respect to the very fo-
cused peaks in the case of fig. 3.11, because of the ∆++ decay distribution. The boundary of
the plot represents the kinematical limit, i.e. limit angle (θp < 60o) and momentum (pp < 1.78
GeV/c), of this proton. The right panel of fig. 3.10 shows the same plot for π+. We can see that
the π+ can reach the maximum polar angle (θπ+ = 180o) and is limited in a smaller momentum
range (pπ+ < 1 GeV/c) because of its small mass. As a decay product of the ∆++, the π+ keeps
however some memory of the production process. Two forward and backward branches still can
be recognized, but they overlap in the region of intermediate θ and p.
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Fig. 3.10 – Polar angle versus momentum in laboratory frame for proton (left panel) and π+

(right panel) in 4π, in reaction pp → n∆++ → npπ+ at 1.25 GeV from Pluto simulation.
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pp → p∆+ → pnπ+

In the case of pp → p∆+ → pnπ+ channel (see fig. 3.11), the distribution of π+ is exactly
the same as the channel above because it comes from the decay of a resonance with the same
mass. But the kinematics of the proton is different, because this proton is scattered from beam
or target and has a momentum opposite to the ∆+ in the p + p center-of-mass system. Thus
this proton presents directly the behavior of the ∆+ resonance production reaction, where the
forward branch of the proton corresponds to the backward going ∆+, while the backward branch
of proton corresponds to the forward going ∆+.

 [GeV/c]pP
0 0.5 1 1.5 2

 [D
eg

.]
pθ

0

20

40

60

80

0

1000

2000

3000

4000

5000

proton

π4

 [GeV/c]+πP
0 0.5 1

 [D
eg

.]
+ πθ

0

50

100

150

0

200

400

600

800

1000

1200

1400

1600

1800

+π

π4

Fig. 3.11 – Polar angle versus momentum in laboratory frame for proton (left panel) and π+

(right panel) in 4π, in reaction pp → p∆+ → pnπ+ at 1.25 GeV from Pluto simulation.

pp → pN∗(1440) → pnπ+

Figure 3.12 shows the kinematical behavior of proton and π+ in the pp → pN∗ → pnπ+

reaction. This reaction process is very similar to pp → p∆+ → pnπ+ just by changing ∆+ to
N*. But as we discussed in 3.2.5, in the OBE model [Huber and Aichelin, 1994] the production
angular distribution of N∗ is predicted to be even more peaked in the p+p center-of-mass system
than the ∆. For that we see clearly in the left panel of fig. 3.12 two branches which present the
forward and backward peaked N∗. Since the N∗ resonance has a higher mass, on average the
scattered proton has lower momentum and smaller polar angle than in the case of the ∆+, and
the emitted π+ has in average larger momentum.
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Fig. 3.12 – Polar angle versus momentum in laboratory frame for proton (left panel) and π+

(right panel) in 4π, in reaction pp → pN∗ → pnπ+ at 1.25 GeV from Pluto simulation.
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3.5 Detection acceptance and efficiency

3.5.1 Definitions

As mentioned in chapter 2, the HADES spectrometer has a high acceptance but still does
not cover the full solid angle. In order to describe the geometrical coverage, acceptance matrices
are produced for different particles individually. These matrices are defined in three dimensions
corresponding to p (momentum), θ (polar angle) and φ (azimuthal angle) in the laboratory frame.

In practice, we generate white tracks, i.e. the tracks generated from Monte-Carlo simulation
which are uniformly distributed in a given range of (p, θ, φ). For acceptance matrices : p is typi-
cally set from 0 to 3000 MeV/c with 20 MeV/c per bin , θ from 0o to 90o with 2 o per bin and φ
is usually chosen from 0o to 60o with 4o per bin which corresponds to the coverage of one sector,
assuming the acceptances are the same from one sector to another. Then the generated events
are sent to the GEANT simulation tool where the geometry of HADES detector is embedded.
The events which hit the active volume of the detector are retrieved afterwards and considered
as detected. Finally the acceptance matrix is calculated using equation 3.16, as a ratio of the
number of detected particles in the HADES detector and the number of particles sent in the
beginning, assuming a perfect (100%) detection efficiency.

FAcc (p, θ, φ) =
NAcc (p, θ, φ)

NTotal (p, θ, φ)
, (3.16)

The other aspect about the detection is the track reconstruction efficiency. After accepting
an event in HADES detector, its (p, θ, φ) and need to be reconstructed for further analysis. All
the accepted events are treated in the same way as the experimental data, going through the
full event reconstruction chain using Runge-Kutta [Agakichiev et al., 2009c] tracking method.
The efficiency is determined as the ratio of reconstructed particles for a given (p, θ, φ) to the
test particles accepted in HADES following equation 3.17. For efficiency matrices : p is typically
taken from 0 to the maximum momentum to be achieved with 20 MeV/c per bin , θ from 0o to
90o with 3 o per bin and φ is chosen from −180o to 180o with 4 o per bin.

FEff (p, θ, φ) =
NRec (p, θ, φ)

NAcc (p, θ, φ)
, (3.17)

The efficiency matrices are calculated for each experiment and taking into account the cor-
responding run conditions.

3.5.2 Acceptance and efficiency matrices

In this section we will discuss the acceptance and efficiency of HADES detector for the pro-
ton and π+ detection which are both required for the pp → npπ+ reaction measurement.

Figure 3.13 gives the projections on two pairs of variables of the three-dimensional acceptance
matrices for one sector. All sectors are assumed equal in the case of acceptance matrices. We
can see the nearly homogeneous acceptance of about 90% for both proton and π+ for θ ranging
from 15o to 85o due to the geometry of the sectors. A drop of acceptance can be observed at
both edges of φ distribution due to the gap between the neighboring sectors. This effect is even
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larger at the low θ values. Both proton and π+ are bent by the magnetic field towards the beam
axis when they fly through the detector. For a given momentum, the particle is detected only
if its polar angle is between two limits which are shifted to lower values when the momentum
increases. The limits around 300 MeV/c for protons and 100 MeV/c for π+ are due to the energy
loss in the target and RICH.
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Fig. 3.13 – Projections of the three-dimensional acceptance matrices for one sector centered at
φ = 30o. (a) proton acceptance as a function of azimuthal angle φ and polar angle θ ; (b) proton
acceptance as a function of polar angle θ and momentum p ; (c) π+ acceptance as a function
of azimuthal angle φ and polar angle θ ; (d) π+ acceptance as a function of polar angle θ and
momentum p.

In the same way, the detector efficiencies are shown in fig. 3.14. The six bumps along the φ
axis represent the six sectors covering 60o each. The lowest efficiencies are located in the region
of low momentum and small polar angle for proton and π+. A sharp drop of efficiency can also
be seen for both particles for polar angles lower than 45o, since the efficiency of the TOFINO
(FEff ∼ 0.85) is lower than the one of the TOF (FEff ∼ 0.95). Right at this transition area where
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the TOF and TOFINO overlap, the efficiency decreases even lower, i.e. close to 0.8. This bias is
in fact caused by a more strict analysis requirement, i.e. instead of requiring one signal in either
TOF or TOFINO, here both sub-detectors should be fired. High efficiency values can be seen
at the edges and even outside the HADES polar angular coverage, due to the resolution smearing.
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Fig. 3.14 – Projections of the three dimensional efficiency matrices. (a) proton efficiency as a
function of φ and θ ; (b) proton efficiency as a function of θ and p ; (c) π+ efficiency as a function
of φ and θ ; (d) π+ efficiency as a function of θ and p.

In the data analysis which will be shown in chapter 5, the acceptance matrices are used
to filter the simulated events to take into account the HADES geometry coverage. While, the
efficiency matrices are used for both measured data and simulation, i.e. the data are corrected
by efficiency with a threshold and the simulated events are weighted by 0 if the corresponding
efficiencies are below the threshold.

In section 3.8, the acceptance and efficiency will be treated together to illustrate the effects.
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3.6 Opposite sector condition

Besides of detector acceptance and efficiency effects, the hadronic channels measurement is
distorted for a third reason : the trigger condition ”M2 opposite sectors” (see section 2.5.2). Its
influence on the event distributions will be shown in 3.8.

3.7 Momentum resolution

For p + p experiment at 1.25 GeV, Runge-Kutta algorithms [Agakichiev et al., 2009c] have
been employed to reconstruct the particle momentum.

The resolution is dominated at low momentum by multiple scattering, consequently is particle

dependent, and goes like
1

β
. The position resolution on the MDC chambers gives a contribution

△ p

p
which is linear in momentum and particle independent. This position resolution is directly

relates to the knowledge of the detector geometry of wires in space, but also depends on the
calibration of the electronics (details can be found in [Morinière, 2008]).

The resolution has been investigated using the proton-proton elastic collisions at 2.2 GeV. As
the angle resolution is much better than the momentum resolution, the nearly exact momentum
(pcal) of scattered protons can be calculated from their reconstructed polar angle. Using the
Runge-Kutta method, we can also reconstruct the momentum (pRK). By comparing these two

values, the resolution
△ p

p
=

pcal − pRK

pcal
can be measured event by event. For each (p, θ, φ) cell,

the obtained values are fitted by Gaussians as was shown in more details in [Morinière, 2008].
The σ(p, θ, φ) are then used to smear the simulation. For each event (psim, θsim, φsim) in the
simulation, the simulated momentum psim is replaced by a random value psmear drawn from the
Gaussian distribution with mean value equals to psim and variance equals to σ(psim, θsim, φsim).
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3.8 Acceptance and efficiency effects on the pp → npπ+ reaction

3.8.1 Momentum and polar angle distributions

In this section, I will demonstrate the influence of the acceptance, efficiency and Opp. Sec.
condition on the momentum, polar angle and Dalitz distributions of the N∆ → NNπ process.
The main emphasis will be put on distortions due to acceptance and efficiency and the bias due
to the Opp. Sec. trigger condition. Figure 3.15, 3.16 and 3.17 show these effects for the different
reaction processes.

Taking pp → n∆++ → npπ+ as an example, the lower angle limit (θ > 15o) has a strong
effect for forward going protons (forward emitted ∆++). On the other hand, the π+ are strongly
affected by the large polar angle cut (θ < 84o), which eliminates mostly the forward going ∆++.
The Opp. Sec. condition reduces dramatically the number of events (see table 3.3), as can be
read from the bottom row of figure 3.15. The reduction is higher for ∆ produced around 90o in
the center-of-mass.

Fig. 3.15 – Polar angle versus momen-
tum in the laboratory frame in reac-
tion pp → n∆++ → npπ+ for pro-
ton (left) and π+ (right). Upper row :
acceptance and efficiency matrices ap-
plied ; bottom row : acceptance, effi-
ciency matrices and Opp. Sec. condi-
tion applied. Pluto simulation.
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(c) (d)

Acceptance && Efficiency Opposite Sectors (in addition)

pp → n∆++ → npπ+ 10.1% 3.8%
pp → p∆+ → npπ+ 10.4% 3.2%
pp → pN∗ → npπ+ 26.1% 6.27%

Tab. 3.3 – Detection probabilities for pp → npπ+ channel with different conditions : accep-
tance, efficiency and M2 trigger conditions. The values are estimated using Pluto simulations
for different processes : ∆++, ∆+ and N+ respectively.
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Fig. 3.16 – Polar angle versus momen-
tum in the laboratory frame in reac-
tion pp → p∆+ → npπ+ for proton
(left) and π+ (right). Upper row : ac-
ceptance and efficiency matrices ap-
plied ; bottom row : acceptance, effi-
ciency matrices and Opp. Sec. condi-
tion applied. Pluto simulation.
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Fig. 3.17 – Polar angle versus momen-
tum in the laboratory frame in reac-
tion pp → pN∗ → npπ+ for proton
(left) and π+ (right). Upper row : ac-
ceptance and efficiency matrices ap-
plied ; bottom row : acceptance, effi-
ciency matrices and Opp. Sec. condi-
tion applied. Pluto simulation.
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3.8.2 Dalitz plot after all cuts

Finally, we show the Dalitz plots (fig. 3.18) of pp → npπ+ reactions at 1.25 GeV via different
resonances, including detector acceptance and efficiency cut, with the specific M2 Opp. Sec.
trigger requirement and smearing on angles and momentum. Compared with fig. 3.8, the numbers
of counts are much reduced for all three processes. The event distributions have been changed
as well. The Dalitz boundaries are also smeared by the resolution.
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Fig. 3.18 – Simulated Dalitz plot in p + p collisions with final states npπ+ via intermediate
resonances, including (a) ∆++(1232), (b) ∆+(1232) and (c) N∗(1440) at 1.25 GeV. Acceptance,
efficiency matrices, Opp. Sec. condition and resolution effects have been applied.
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Chapitre 4

Experimental data analysis

The experimental data analysis method developed for the hadronic channels analysis in p+p
reaction will be presented in this chapter. We will start with a brief discussion about the special
Particle Identification algorithms used in the analysis. Then event selection methods will be
presented for different channels. A detail event correction strategy which is related to the M2
Opp. Sec. trigger condition will be discussed in detail, since it causes a lot of difficulties for the
pp → npπ+ channel data analysis. Other steps, such as efficiency and acceptance correction will
also be demonstrated. At the end, a summary of the systematic errors related to all the analysis
steps will be given.

4.1 Particle identification

The Particle Identification (PID) is realized by using the velocity (β = v/c) and momentum
correlation. On one hand, the momentum can be reconstructed by measuring the particle’s de-
flection by the magnetic field using different tracking algorithms. On the other hand, to obtain
the velocity, one needs the time-of-flight from the target and the track length which can be
known from tracking algorithms.

In HADES experiments, one usually measures the time interval :

tmeas = tstop − tstart (4.1)

The ”stop” signal is generated at the time tstop by the TOF or TOFINO detector and is related
to the time-of-flight (ttof) of the particle between the target and the TOF or TOFINO by

ttof = tstop − t0, (4.2)

where t0 takes into account the propagation of the signal before reaching the Time to Digital
Converter (TDC).

The ”start” signal tstart is usually produced by the START detector placed in the beam,
which provides a time information that is directly related to the interaction time.

However, in the April 2006 experiment, no START detector could be used. With proton
beams, the deposited signal in diamond detectors is too small. A start system based on a scin-
tillator hodoscope has been tested, but a high number of secondaries were produced, resulting
in instabilities in the RICH detector.
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56 CHAPITRE 4. EXPERIMENTAL DATA ANALYSIS

Fig. 4.1 – The momentum versus velocity distribution. The black solid curves define the banana
cut used for p and π+ separation in the pp → npπ+ channel analysis.

So, in the absence of a fast signal from a START detector, the data acquisition was started
at the time tstart when the fastest particle gave a signal in the TOF or TOFINO scintillator.
In this case, the START time tstart depends both on the time of interaction and on the time of
flight of this fastest particle. The reconstruction of tstart is therefore needed for each event to
determine the time-of-flight and hence the PID of the particles.

To identify the detected particles corresponding to the pp → npπ+ channel, the following
procedure was used :

– First, by requiring the presence in the event of only two positively charged tracks with no
matching with the RICH, only ”two-prong” events with π+ and protons are selected.

– Then to select events with one π+ and one proton exclusively and to affect the correct
identification to each particle, the ”event hypothesis” method is used.

We will now illustrate the way how the ”event hypothesis” works. A given hypothesis is
made, for example particle 1 is a proton and particle 2 is a π+. Using the corresponding masses
mp and mπ+ , the measured momenta (p1 and p2) and the reconstructed track lengths of the
particles, we can calculate the times of flight tcalc1 (p1, mp) and tcalc2 (p2, mπ+) for both particles.
If the hypothesis is true, we have :

tcalc1 (p1, mp) = ttof1 = tmeas
1 + tstart − t0 (4.3)

tcalc2 (p2, mπ+) = ttof2 = tmeas
2 + tstart − t0, (4.4)

These equations are used to deduce

tstart − t0 =
1

2
(tcalc1 (p1, mp) + tcalc2 (p2, mπ+) − (tmeas

1 + tmeas
2 )) (4.5)

and then, we obtain

ttof
1 = tmeas

1 +
1

2
(tcalc1 (p1, mp) + tcalc2 (p2, mπ+) − (tmeas

1 + tmeas
2 ))

ttof
2 = tmeas

2 +
1

2
(tcalc1 (p2, mp) + tcalc2 (p2, mπ+) − (tmeas

1 + tmeas
2 ))

(4.6)
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Using the track lengths and the time-of-flights deduced from equation 4.6, the velocities are
calculated. Depending on the correlation with the momentum (see fig. 4.1), the initial hypothesis
is validated or rejected. All the possible hypotheses for two-prong events with protons and π+

are tested in the same way.

The event hypotheses algorithm was developed as a common work by Marcin Wísniowski,
Ingo Fröhlich and Björn Spruck and the efficiency for the particle identification has been esti-
mated to be above 90% [Wísniowski, 2009].

4.2 Event selection

Following the event hypothesis method described above, the ppπ0 and the pp elastic scattering
channels are selected by asking two protons in the exit channel, while the npπ+ channel is selected
by requesting one proton and one positive pion.

4.2.1 Event selection for pp events

pp → pp

For the elastic scattering events, the angular correlations are checked, using the fact that the
two outgoing protons are expected to be colinear in the total center-of-mass system because of
the momentum conservation. These can be checked by the relations :

|φp1 − φp2| = 180o,

tanθp1 ∗ tanθp2 =
1

γ2
CM

,
(4.7)

where φp1 and φp2 are the azimuthal angles and θp1 and θp2 the polar angles of two protons in lab.
γCM is the Lorentz factor of the center-of-mass system. For the 1.25 GeV collision, 1/γ2

CM = 0.6.

In fig. 4.2 (left), these two angular correlations are shown and the prominent peaks centered
at |φp1 − φp2| = 180o and tan θp1 ∗ tan θp2 = 0.6 are due to the elastic events. An elliptical cut
(the semi-major axis a = 3.2o and the semi-minor axis b = 0.04) is imposed to select the elastic
events for further analysis.

pp → ppπ0

The inelastic events, which only consist in pion(s) production channels since the energy is
below the η threshold, can also be seen in fig. 4.2 (left). They appear as a cloud located below
tan θp1 ∗ tan θp2 = 0.6. The elastic and inelastic events however overlap because of the finite
resolution. As the first step, a loose graphical cut is applied in order to eliminate most of the
elastic events and keep as many as possible inelastic ones.
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Fig. 4.2 – Left : 1st step of ppπ0 event selection : angular correlation. Right : 2nd step of ppπ0

event selection : missing mass of proton2 versus missing mass of proton1.

In the second step, a proton missing mass cut is then imposed to remove the residual elastic
events. It exploits the fact that for the inelastic events, the missing particle(s) should be one
or several pion(s) while for elastic events there should be no missing particle. After a second
graphical cut shown in fig. 4.2 (right), the proper inelastic events are selected from elastic ones.
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Fig. 4.3 – Left : One proton missing mass distribution. Black : of all the two protons detected
events ; red : after the angular cuts ; green : after in addition the one proton missing mass cut.
Right : One proton missing mass spectra. Black : for all the two protons detected events ; blue :
elastic events ; green : inelastic events.

Fig. 4.3 (left) shows the evaluation of the one proton missing mass spectrum with the event
selection procedure as described above. We can see that the elastic events are efficiently removed.
pp events are then well separated into elastic and inelastic parts (right panel of fig. 4.3), and
can be used for further analysis. In this thesis, for the pp elastic channel and the pp → ppπ0

channel analysis, I only discuss the event selection strategy since it was developed by the Orsay
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team. More detailed data analysis results on these channels will be presented in the PhD thesis
of Anna Kozuch.

4.2.2 Event selection for npπ+ events

The pp → npπ+ channel is selected by using the missing mass technique as well. From the
(p, π+) missing mass spectrum (fig. 4.4), we can see a prominent peak centered at 941 MeV/c2

with FWHM=30 MeV/c2 which indicates the missing neutron as expected. In addition, the
two-π production process can be observed as a small bump starting at 1080 MeV/c2, where is
located the threshold of the second π production. On the left hand side of the neutron peak, some
mis-identified pp elastic events are found because of the loose cut used in particle identification
(see 4.1). However the neutron peak is well separated, so we simply applied a hard-cut on the
(p, π+) missing mass spectrum from 800 to 1080 MeV/c2.

]2 [Mev/c+πpmissingM
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15000

20000

Fig. 4.4 – The (p, π+) missing mass distribution. The red bars correspond to the window used
for the npπ+ event selection.

4.2.3 Uncertainty of event selection methods for the pp → npπ+ reaction

Comparison of two event selection methods

Two methods are considered for the selection of pp → npπ+ reactions. Both of them are
based on the missing mass of (p, π+) :

– hard-cut method
The first one is the hard-cut method as described in the last section which has finally been
used in the analysis.

– fit method
The second method consists in fitting the missing mass spectra as a sum of two gaussian
functions centered at the same position and a polynomial function to take into account
the background. The fit is done in the region where the missing mass spectrum is well
symmetric. For each bin, the signal yield is defined as the sum of the two gaussians.

We will show here an example of reconstructing the angular distribution of neutron (missing
particle in the pp → pπ+X reaction) in the p + p center-of-mass system. In the case of the fit
method, the yield is obtained by fitting the (p, π+) missing mass distribution and summing the
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60 CHAPITRE 4. EXPERIMENTAL DATA ANALYSIS

two Gaussian in each neutron angle bin. In the case of the hard-cut method, the same condition
is put for all the neutron angles. One can of course conclude that the advantage of the fit method
is that the selection depends on the neutron angle bin, which takes into account the fact that
both the signal width and the background might be different from one bin to another. We will
compare in the following these two methods.
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Fig. 4.5 – Event selection for the pp → npπ+ reaction using the missing mass of the (p, π+)
distribution, in different neutron angular regions. Left : −0.2 < cos θCM

n < 0, Right : 0.75 <
cos θCM

n < 0.8. Data are shown by open circles. For the hard-cut method, the lower and upper
limits are shown as red bars. For the fit method, the spectra are fitted as a sum (pink solid
curve) of two gaussian functions (black dot-dashed line), and a polynomial function (red dashed
line), then the signal yield is defined as the sum of the two Gaussians integrated between the
blue bars.

Two examples are shown in fig. 4.5. Both event selection methods are compared with each
other in two different neutron angle regions. When −0.2 < cos θCM

n < 0 (left panel of fig. 4.5), the
two-pion contribution (one neutron and one pion missing) which is centered close to 1200 MeV/c2

plays a significant role and its tail goes down below the production threshold 1080 MeV/c2. In
this case, the fit method gives a better result in the sense of subtracting efficiently the two-pion
background. When 0.75 < cos θCM

n < 0.8 (right panel of fig. 4.5), the contribution of two-pion
is less pronounced and the separation between the neutron and the two-pion contribution is
clearer. In addition, the neutron peak is asymmetric. In the region shown by the green ellipse,
most of the events correspond to the pp → npπ+ reaction, but are shifted by the resolution. Thus
in this case, the hard-cut method gives a better estimate of the signal yield. It indeed allows
to take into account signal events which are wrongly considered as background in the fit method.

In the pp → npπ+ reaction analysis at 1.25 GeV we have in most of the cases the latter sit-
uation. For the neutron angular distribution, the difference of the total selected yield from the
two methods is about 5%. The hard-cut method is considered to be more precise in determining
the yields for the pp → npπ+ analysis.

Systematic error on the hard-cut method

The systematical errors introduced by the hard-cut method will be investigated in the fol-
lowing. The hard-cut is imposed symmetrically around the neutron peak from 800 MeV/c2 to
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1080 MeV/c2. The basic idea is to check the sensitivity to the cut limits.

The limit on the right side aims at removing the two pion contribution. By varying this limit
on Mmissing(p, π+) from 1050 MeV/c2 to 1110 MeV/c2, the change of yield is found to be less
than 1.5%.

The situation for the limit on the left hand side is more complicated. Figure 4.6 shows the
tanθp ·tanθπ+ versus the missing mass of (p, π+) distributions in two slices of cos θCM

n . On the left
panel (−1.0 < cos θCM

n < −0.8), apart from the prominent neutron peak at 940 MeV/c2 and two-
pion contribution starting from 1080 MeV/c2, we can also see a line at low Mmissing(p, π+) and a
spot located around 500 MeV/c2. In both cases, one proton is misidentified as a pion. The line is
identified as being due to the pp elastic scattering because of the correlation tanθp ·tanθπ+ = 0.6.
The spot is identified as residual ppπ0 events since the tanθp · tanθπ+ is lower than for the elastic
events (see fig. 4.2).
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Fig. 4.6 – tanθp · tanθπ+ versus (p, π+) missing mass, in different neutron angle regions. Left :
−1.0 < cos θCM

n < −0.8, Right : 0.8 < cos θCM
n < 1.0.

On the right panel (0.8 < cos θCM
n < 1.0), we can see an unexpected accumulation of events

around Mmissing(p, π+) =700 MeV/c2. By selecting these events and looking at their θ versus p
distributions (see upper row of fig. 4.7), we can draw some conclusions about the origin of these
events. Using a graphical cut on the θ versus p of π+, we separate the events in two groups. We
then show with different colors θ versus p correlations for the proton and the π+ for each group
of events.

For the first group (black color), the proton follows the kinematics of elastic scattering, while
the π+ follows the kinematics of the pp → npπ+ process (see fig. 3.15). We conclude that this
group of events corresponds to a random coincidence between a π+ from the pp → npπ+ pro-
cess and a proton from elastic scattering. It is interesting to note that the acceptance for these
protons is different from the case of correlated two protons, where protons with θp > 65o are
suppressed (see fig. 3.15).

For the second group (red color), the ”π+” has a kinematical correlation close to the elastic
protons, while the proton is in agreement with the pp → npπ+ kinematics (see fig. 3.15). So,
they are likely to be due to a coincidence between an elastic proton misidentified as a π+ and a
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well identified proton coming from the pp → npπ+ reaction.
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Fig. 4.7 – Polar angle versus momentum distribution in pp → npπ+ reaction for proton (left)
and π+ (right), with condition 0.8 < cos θCM

n < 1.0 and Mmissing < 700 MeV/c2. The red box on
the π+ distribution in the first row indicates the graphical cut. First row : all selected events ;
second row : events outside graphical cut ; third row : events inside graphical cut.

As a conclusion, most of the events removed by the lower limit on the (p, π+) missing mass
are due either to bad identified elastic protons or to random events. The aim of this study was
to understand in detail the origin of these events. They correspond however to a very small
fraction of the total yield (< 3%). In the meantime, the number of good events removed by the
lower limit cut is estimated for each bin and is used to calculate the error bars on the yields.

The systematic error due to the event selection using the hard cut method is adjusted in
detail as a function of neutron angle. For each bin, the final error is calculated as a quadradic
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4.3. TRIGGER EFFICIENCY CORRECTION 63

sum of the uncertainties due to the lower limit and to the higher limit. It varies from 4.6%
at cos θn close to -1 to 1.7% for cos θn close to 0. The average global uncertainty on the event
selection is estimated to be 1.8%.

4.3 Trigger efficiency correction

4.3.1 Event loss due to Time Signal condition

In the hadronic channel data analysis, the event sample has been taken using the M2 trigger
(see section 2.5.2) which is optimized for the elastic scattering detection. This trigger is fired
when two conditions are fulfilled :

– M2 Opposite Sectors (Opp. Sec.) : at least two scintillators (either from TOF or TOFINO)
from Opp. Sec. are hit ;

– Time Signal (TS) : at least one particle goes into the TOFINO detector, covering approx-
imately the polar angles 16o < θ < 45o. Note that the θ here is defined with respect to the
target.

The latter condition then causes an event loss because it eliminates the case of both particles
hitting the TOF detector, i.e. both particles being emitted with θ < 45o. The pp elastic channel
and pp → ppπ0 are not affected by this condition because of their kinematic limits but the
influence can be clearly seen in the pp → npπ+ channel.

Fig. 4.8 shows the correlation between the polar angle of the proton and the π+ in the data.
A discontinuity is observed around 45o corresponding to the transition from TOFINO to TOF.
However, the boundary is not strictly at 45o and shows a dependence on momentum. It is on
one hand because of the deviation of the particles trajectories due to the magnetic field ; and on
the other hand due to the smearing from the triggers different from M2. In the data analysis,
we ask ”inclusive M2” as trigger condition, which means that the events fitting in addition M3
(see section 2.5.2) are also selected (table 4.1). This kind of events can originate either from a
coincidence between the npπ+ event and a randomly distributed charged particle or from a npπ+

event in which the proton or π+ drops into the TOF/TOFINO overlap and causes a double hit.
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Fig. 4.8 – Polar angle of π+ versus polar angle of proton in lab.
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Trigger requirement Proportion

Inclusive : M2 Opp. Sec. & TS 100%
Exclusive : M2 Opp. Sec. & TS ∼ 71%
Exclusive : M2 Opp. Sec. & TS & M3 ∼ 21%

Tab. 4.1 – Proportion of the two charged particle events with different trigger conditions.
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Fig. 4.9 – Polar angle as a function of momentum. Left : proton. Right : π+.

Due to the correlation between polar angle and momentum, the loss is mostly concentrated
around θp ∼ 46o and θπ+ ∼ 50o where the maximum of the distribution is found (see fig. 4.9).
Taking protons as an example (left panel of fig. 4.9) : In the region of θp < 45o the trigger
condition is fulfilled since the proton hits the TOFINO. Then for angles larger than 45o, the
proton goes into the TOF and we start to lose events until the corresponding π+ starts to fire
the TS. That’s the origin of the depression around 47o.

The borders of depressed region in fig. 4.9 (left) correspond to decreasing polar angles when
the momentum increases. This can be understood because before reaching the TOF or TOFINO
detectors, the proton was bent by the magnetic field towards the beam axis depending on its
momentum. The higher momentum the proton has, the smaller the deviation is. The same phe-
nomena can be found even more clearly in the case of π+, because the relevant momenta are
smaller.

The total event loss due to TS is estimated to be 3.5%, which represents a quite small fraction
of the total cross section. However, this loss is concentrated close to the maximum of the proton
angular distribution and therefore induces a quite distinct hole in the distribution (left panel
of fig. 4.9), as well as a reduction of counts in a broader region in the π+ angular distribution
(right panel of fig. 4.9).

4.3.2 Strategy of correction for TS

In order to correct for this event loss, an accurate correction depending on the polar-angle
and momentum is needed. The basic idea is to extrapolate the π+ polar angle distribution using
the shape of the simulation (based on the resonance model as mentioned in 3.2).
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First of all, the detailed comparison of the polar angle distributions with the simulation in
momentum slices is realized and presented in fig. 4.10 and fig. 4.11. Only event loss concerned
momentum ranges are shown : for protons 100 MeV/c per slice from 200 MeV/c to 1000 MeV/c
and for π+ 50 MeV/c per slice from 100 MeV/c to 500 MeV/c. The π+’s spectra are normalized
to the surface in the region where no correction is needed (32o to 50o depending on momentum
slice), while the proton’s spectra are normalized to have the same maximum yield.
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Fig. 4.10 – Distribution of proton polar angle in different momentum slices. The filled spectrum
drawn with solid line presents the measured data and the dashed line presents the simulation.
Both spectra are selected for the same proton momentum region as indicated (in MeV/c) and
are normalized to have the same maximum yield.

For those extreme momentum regions, for example the first slices for proton, the simulation
and the data diverge a lot due to the imperfect description of the resolution effects on the edge of
the detector acceptance. From fig. 4.9, it can be seen that the correction is needed in the region
with θp > 42o and pp < 800 MeV/c. In this region, the shape of data is in global agreement
with simulation in the TOFINO region (fig. 4.10 and 4.11). Considering on one hand that the
proton angular distribution is very narrow and the maximum of the distribution is sometimes
missed due to the inefficiency (e.g. for pp in 400 − 500, 500 − 600 and 600 − 700 MeV/c), on
the other hand that the polar angle of π+ distributes more widely than proton, we decided to
use the shape of simulated spectra to correct the polar-angle of π+ with a dependence on its
momentum in the region θp > 47o. Meanwhile, doing the correction in small phase space regions
allows us to minimize the model dependence.

The correction factors are calculated as

Ftrigger corr. =
N(θ, p)simπ+

N(θ, p)data
π+

, (4.8)
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Fig. 4.11 – Polar angle of π+ in different momentum slices. The filled spectrum drawn with
solid line presents the measured data and the dashed line presents the simulation. Both spectra
are selected for the same π+ momentum region as indicated (in MeV/c) and are normalized to
the same surface in the θ range where the correction is not needed.

where Ftrigger corr. is the correction factor, N(θ, p)simπ+ and N(θ, p)data
π+ are the counts in each

∆θπ+ bin of 1o and ∆pπ+ bin of 20 MeV/c with the condition of θp > 46.6o for simulation and
data respectively. The value of θp > 46.6o is adjusted to obtain the best correction.

Fig. 4.12 shows these correction factors bin per bin. In ”correction not-needed” region
(θπ+ < 45o), we can see that the correction factor is close to 1. It means that the model
used in simulation works well for the description of (θ, p), which confirms our strategy to use
the simulated shape to realize the correction. The description of the data by the simulation will
be discussed in more details in the next chapter.

Then, these correction factors are applied to scale the θπ+ , event by event, when θπ+ > 45o

and θp > 46.6o. For the very low momentum π+, the correction is not applied because the statis-
tics in this region is poor and the correction could easily introduce big errors. As the last step,
a smearing of the correction factor as a fuction of θp is realized in the range of 45o < θp < 48o

to have smooth and continuous distributions.

All the correction procedure is controlled using different spectra to avoid creating artificial
structures.
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Fig. 4.12 – Correction factors as a function of π+ polar angle in different π+ momentum ranges
as labeled (in MeV/c) to be applied in the region of polar angle of proton greater than 46.6o.
The ratios are normalized to have that the mean value equals to 1 in 30o < θπ+ < 42o.
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4.3.3 Angular distribution after correction

Fig. 4.13 shows the spectrum of π+ polar-angle distribution after correction in θp > 46.6o.
The corrected fraction is very important because we are in the specific region where no proton
hits the TOFINO. So, here the measured yields come either from the π+ hitting the TOFINO
(θπ+ < 45o) or from the M3 trigger.

Once we look at the corrections in the whole momentum and polar angle region, the cor-
rected fraction is much smaller however (fig. 4.14 and fig. 4.15). The correction is reasonable
because it gives back a continuous and smooth polar angle distribution for both proton and π+

(fig. 4.16 and fig. 4.17).

The related systematical errors will be estimated in the following.

4.3.4 Uncertainty of trigger condition correction

This uncertainty only concerns the specific regions where the corrections are realized. By
varying the Ftrigger corr. (see equation 4.3.2), we determined the errors on these factors as 22%.
This is mainly due to the model dependence of the correction, based on the simulation. The
uncertainty at the level of total cross section due to this correction is estimated to be about
0.7%. We want to stress again that the events affected by this correction represent however a
small fraction which is 3.5% of the total cross section.
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Fig. 4.13 – Polar angle of π+ in different momentum slice after correction for the M2 Opp. Sec.
trigger condition in the region θp > 46.6o. The spectra drawn with solid line present the data
before correction, compared with the spectra after correction drawn with dashed-dotted line.
The areas filled in red indicate the correction contribution.
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Fig. 4.14 – Polar angle of proton in different momentum slice after correction for the M2
Opp. Sec. trigger condition. The spectra drawn in solid line present the data before correction,
compared with the spectra after correction drawn with dashed-dotted. The areas filled in red
indicate the correction contribution.
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Fig. 4.15 – Polar angle of π+ in different momentum slice after correction for the M2 Opp. Sec.
trigger condition. The spectra drawn in solid line present the data before correction, compared
with the spectra after correction drawn with dashed-dotted. The areas filled in red indicate the
correction contribution.
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Fig. 4.16 – Polar angle of π+ versus polar angle of proton after correction for the M2 Opp. Sec.
trigger condition.
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Fig. 4.17 – Polar angle as a function of momentum after correction for the M2 Opp. Sec. trigger
condition. Left : proton. Right : π+.
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4.4 Normalization procedure

The normalization procedure used in the hadronic channel analysis will be explained in this
section, for both simulation and data.

4.4.1 Normalization for simulation

In the simulation, a certain number of events N4π
sim is generated in 4π solid angle, correspond-

ing to a process with cross section σ4π
sim. The simulated yields have therefore to be multiplied by

the factor

Ksim =
σ4π

sim

N4π
sim

(4.9)

4.4.2 Normalization for experimental data

σ/N measured by pp elastic scattering

For experimental data, the normalization of the yields measured in any channel is realized
by using the yield determined by the simultaneously measured elastic events. This work was
done by Radek Trebacz (Krakow) and the principle will explained in the following.

The pp elastic scattering cross section is known from the EDDA experiment [Albers et al.,
2004] which covered the polar angles from 35o to 145o in the center-of-mass system. HADES
measures the elastic events in 42o to 145o (in CM) polar angle region because of the need to
detect the two protons. The basic idea is to compare the measured pp elastic event to a simulation
using the EDDA angular distribution, then scale the data to have the same yield in the common
polar angle region between EDDA and HADES, so in 42o to 145o (corresponding to 16o to 69o

in the lab frame).

 [deg]pθ
20 40 60

 [m
b/

de
g]

θ
/dσd

0

0.05

0.1

0.15

0.2

HADES data

Pluto simulation

Fig. 4.18 – Angular distribution of pp elastic events (black dots) measured by HADES compared
to a Pluto simulation using a parametrization of the EDDA data as input [Albers et al., 2004].
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The normalization factor is therefore

Kexp =
σelast

N elast
= (

σelast
sim

N elast
exp

) 16o
−69o

(4.10)

where σelast 16o
−69o

sim =0.6 mb is the elastic cross section in the polar angle 16o−69o and N elast 16o
−69o

data

is the corresponding number of events measured by HADES.

The latter one is calculated in three steps :

N elast 16o
−69o

exp = N elast 16o
−69o

record · FLV L1
dsf · FM2 Opp.Sec.

dsf · F elast 16o
−69o

Acc . (4.11)

- Firstly, the number of recorded events corrected for efficiency N elast 16o
−69o

record = 7.1 ·106

should be scaled by the global down scaling factor of the LVL1 FLV L1
dsf = 5 ;

- Secondly, this number should be multiplied by a second specific down scaling factor of the
M2 Opp. Sec. trigger FM2 Opp.Sec.

dsf = 64 ;

- Thirdly F elast 16o
−69o

Acc = 1.766 is used to correct the acceptance for pp elastic events in the
polar angle region (16o − 69o) ;

Finally, the normalization factor results in Kexp = (1.50 ± 0.10) · 10−12 mb.

Normalization procedure for npπ+ events

With the information of pp elastic events mentioned above, we normalize the pp → npπ+

channel using equation 4.12.

σnpπ+

exp = Nnpπ+

exp · Kexp (4.12)

Note that, the measured counts for npπ+ events should also be corrected by FLV L1
dsf and FM2 Opp.Sec.

dsf .

4.4.3 Uncertainty of the normalization procedure

As mentioned before, the spectra are scaled to have their unit directly in cross section in
mili-barn using the elastic scattering. A 6% uncertainty on the normalization factor should be
considered. It includes on one hand the error of the pp elastic cross section measured by EDDA
(main source close to 6%), on the other hand the uncertainty on the pp elastic event detection
efficiency of HADES.

4.5 Efficiency correction

The measured spectra have been corrected for efficiency. The principle of the correction is
based on the efficiency matrices introduced in section 3.5.2. For the pp → npπ+ analysis, each
event is corrected for p efficiency and π+ efficiency. The correction is realized only when both
the proton and π+ efficiencies are above 0.4 ; otherwise the events will be weighted by 0.

Concerning the efficiency correction for npπ+ events, three kinds of systematic errors can be
addressed :

– Error due to the efficiency threshold
This has been checked by comparing the corrected spectra using different threshold values.
It has been found that the difference between corrected spectra stay very small. Thus the
related error is negligible.
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– Global efficiency
The normalization procedure to pp elastic scattering cross section takes into account a
possible global error on the proton efficiency. However, the detection efficiency for npπ+

events is different from pp elastic events because we require a (p, π+) pair to be detected
instead of two protons. To take that into account, we estimated a 2% global error corre-
sponding to a possible global scaling of the pπ+ yield with respect to pp.

– π+ angle dependent efficiency
Then, the polar angle spectra per sector pair for both proton and π+ have been studied
to check the detection efficiency correction (see fig. 4.19). Identical distributions should be
found for each sector if the efficiency is perfectly described.

Figure 4.20 shows the ratio of counts between one sector pair and the average. The fluc-
tuation indeed indicates quantitatively the difference between sector pairs. The difference
remains however within 12% at maximum. As the spectra are always averaged over 6
sectors, the effect of this difference between the sectors has a very low effect on our data
analysis.

The main problem is the variation of the efficiency as a function of the relevant variables
(here the polar angle), which has to be taken into account correctly by the efficiency ma-
trices. As can be seen from fig. 4.19, there are some fluctuations of the yields, which can be
due to some local unexpected inefficiencies, either of the MDC’s or of the TOF/TOFINO.

Especially, a jump appears for all the sectors, located right at the TOF/TOFINO tran-
sition. It is difficult to distinguish wether the jump is due to an overestimated efficiency
in the TOF region or an underestimated efficiency in the TOFINO region. To take both
effects into account, a 6% error has been estimated for each π+ angle bin. To estimate the
error on the yields integrated over θπ+ , these errors are treated as uncorrelated for all bins
inside the TOFINO (θπ+ < 45o) or inside the TOF (θπ+ > 45o) and correlated for the two
groups of bins. More explicitly, this error is :

σ = (

i0
∑

i=1

Ni)
−1(

i0
∑

i=1

δ2N2
i )1/2 + (

N
∑

i=i0+1

Ni)
−1(

N
∑

i=i0+1

δ2N2
i )1/2 (4.13)

where, δ = 6% is the relative error in each bin, Ni is the number of events in each bin
and i0 is the bin corresponding to θπ+ = 45o. Equation 4.13 yields σ = 4.3%, which will
be included in the point to point systematic errors for the spectra integrated over the π+

polar angle.

As the correlation between the different variables which will be discussed in the next
chapter (neutron angle, invariant mass and π+ angle in (p, π+)) reference frame, ...) is
difficult to treat in detail, this error is taken into account both on each bin of the different
spectra and as a global error for the cross section estimate. In this way, this error related
to the π+ angle dependence of the efficiency might be overestimated. However, it remains
lower than the normalization error.
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Fig. 4.19 – π+ polar angle distribution in lab measured in pp → npπ+ reaction at 1.25 GeV.
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4.6 Acceptance correction

Acceptance correction has been performed in our analysis. The spectra in full phase space
allow for a direct comparison to different models. The extrapolation is based on using the sim-
ulation.

We will give here the principle for this extrapolation. For example, for a spectrum of the
variable x, we calculate for each bin i a F (x)i (see equation 4.14)

F (x)i =
N(x)sim 4π

i

N(x)sim Acc
i

, (4.14)
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where N sim 4π
i is the 4π yield of x in bin i in simulation and N sim Acc

i is the extracted yield of
x in bin i in simulation. Then the factors are applied to the experimental data.

However, this correction can not avoid the dependence on the models which are used in the
simulation. The number of events in HADES indeed depends on the acceptance cuts on the
other variables. Through this effect, the acceptance factor therefore depends on the distribution
of other variables.

To reduce this effect, accurate two-dimensional corrections are realized afterwards. Instead
of correcting directly the distribution of the variable x, we introduce a second variable y and
calculate correction factor as F (x, y)j (see equation 4.15).

F (x, y)j =
N(x, y)sim 4π

j

N(x, y)sim acc
j

, (4.15)

In the same way as above, a more accurate correction can be done and less model dependent
4π spectra can be obtained. In the correction procedure, the variable bin size is adjusted ac-
cording to the variation of statistics of the spectra. In high yield regions, the smaller bin size is
taken to have distinct corrected spectra. While in the low statistic regions, the larger bin size is
considered to avoid introducing huge errors. The related error determination will be discussed.
The details about the adjustment of the bin size and choice of the second variable together with
the acceptance corrected spectra will be shown in section 5.9.

4.6.1 Uncertainty of acceptance correction

From the acceptance correction procedure mentioned above, we can conclude that the un-
certainty from this procedure can originate from two aspects, which are

– Error related to the precision of correction factor, which is related to the knowledge of the
active volumes of the detector.

– Error due to the model dependence for the acceptance correction.
To take these two uncertainties into account, we estimate on one hand the point to point errors
to be included in the spectra, and on the other hand a global value which determines the un-
certainty for the total cross section. Note that these errors concern only acceptance corrected
spectra.

A detailed discussion will be given in section 5.9, 5.10, directly related to the acceptance
corrected spectra and the total cross section value.

4.7 Error evaluation

The total error on experimental spectra includs a statistical error and systematic uncertain-
ties. Both are taken into account by a quadratic sum.

All sources of systematical uncertainties are summarised in the table 4.2 below, taking the
angular distribution of neutron in center-of-mass system as an example. The errors related to
the acceptance correction are not present here and will be discussed in section 5.9.

The point to point errors are included in the error bars on experimental spectra as a quadratic
sum of errors listed in the table. The global uncertainties are also added quadratically and will
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Source of systematic error Point to point error Global uncertainty
[%] [%]

Event selection 1.7 to 4.6 1.8

Trigger efficiency correction (TS) 22 0.77
(over 3.5% of total events)

Global efficiency correction 2

π+ angle dependent efficiency 4.3 4.3

Normalization 6

Total 7.7

Tab. 4.2 – Summary of systematic errors for the center-of-mass neutron angular distribution in
the pp → npπ+ reaction analysis.

be taken into account at the level of the total cross section.
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Chapitre 5

Results of pp → npπ+ reaction at 1.25
GeV

In this chapter the results for exclusive one-pion production measurements in the p+ p reac-
tions will be discussed, with main emphasis on the pp → npπ+ channel. The preliminary results
of these measurements has been already presented in [Liu et al., 2010a,b]. The measured spectra,
such as invariant mass and angular distributions, are compared in the HADES acceptance to the
Pluto simulation based on the resonance model as introduced in section 3.2. We first compare
the data to the standard Pluto model and then propose some improvements to describe better
the data. Accurate acceptance corrections have also been performed. At the end, the hadronic
channels measured at 1.25 GeV are combined with the same measurements performed at 2.2
GeV to give a global view of the pion production and the role of resonances in the 1-2 GeV
range in p + p reactions.

5.1 Dalitz distribution
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Fig. 5.1 – Dalitz plot of the pp → npπ+ reaction at 1.25 GeV : (n, π+) versus (p, π+) invariant
mass squared distribution (HADES data). The black dashed curve indicates the Dalitz boundary.
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Figure 5.1 shows the Dalitz plot of pp → npπ+ reactions at 1.25 GeV measured in HADES
acceptance. The kinematically allowed region (inside the so called Dalitz boundary) for this
reaction has been introduced in section 3.4.1 and is shown here by the black dashed line. Some
events can be found out of the Dalitz boundary ; this is due to the finite detector resolution
effect. We know from the simulation (see section 3.18) that the measured Dalitz distribution is
distorted by the detector acceptance with respect to the 4π one. Even though, one can clearly
see the ∆++ signal located around M2

inv(p, π+) = 1.5 (GeV/c2)2 corresponding to the squared
mass of ∆++(1232), which confirms the dominance of the ∆(1232) resonance production in
pp → npπ+ at this energy (see section 3.2.1). The ∆+ is expected to have a cross section 9 times
lower than the one of ∆++, and the ∆+ signal located around M2

inv(n, π+) = 1.5 (GeV/c2)2 is
indeed hardly visible.

The spot appearing in the Dalitz plot for equal (n, π+) and (p, π+) invariant masses squared
around 2 (GeV/c2)2 is due to the proton-neutron Final State Interaction (noted as FSI) as we
will see in section 5.3.

5.2 π+N invariant mass distribution

The invariant mass distributions for (p, π+) and (n, π+) pairs in the pp → npπ+ reactions at
1.25 GeV as well as the first comparison to the resonance model will be shown in this section.
In the following, and in the rest of this thesis, the experimental data are shown in the HADES
acceptance.
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Fig. 5.2 – Left : (p, π+) and Right : (n, π+) invariant mass distributions compared to a Pluto
simulation according to the resonance model : total (red), ∆++ (blue), ∆+ (orange) and N*
(green). The dashed red curves show the simulation with an ideal resolution. Both experimental
data and simulations are normalized to the total pp elastic cross section (see section 4.4) and
corrected for efficiency.

Figure 5.2 exhibits the projection on the (p, π+) and (n, π+) invariant masses together with
a comparison to the Pluto simulation. Error bars include statistical and systematic errors, where
the former ones are negligible while the latter one is mainly due to event selection and efficiency
corrections (see section 4.7). The incertitude caused by the trigger condition correction proce-
dure also contributes to the systematical error and it has been included in the way explained in
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section 4.7. This is the reason for the larger error bars appearing on both (n, π+) and (p, π+)
invariant masses around 1.2 GeV/c2.

The prominent peak of Minv(p, π+) around 1.23 GeV/c2 found in the left panel of fig. 5.2
confirms quantitatively the dominance of π+ production via the ∆++ resonance decay, although
the shape of the resonance is distorted by the instrumental effects. Especially in the low mass
region, where the spectra show a very steep rise caused by the kinematical coverage of the de-
tector (pπ+ > 0.1 GeV/c2 and θπ+ < 84o), the data are very sensitive to the description of
the detector acceptance and to the parametrization of momentum resolution in the simulation.
The shoulder at 1.44 GeV/c2 is mainly due to the acceptance effects for the ∆++ contribution
and slightly to the ∆+ contribution. In the simulation, this shoulder is present but not enough
enhanced.

The Minv(n, π+) is more suited to see the ∆+ signal, but the distribution (right panel of fig.
5.2) here is quite broad and the resonance structure of the ∆+ can not be seen due to the higher
weight of the ∆++. The N∗ contribution is small.

Generally speaking, the shapes of the spectra, both Minv(p, π+) and Minv(n, π+), are in
rather good agreement with the pp → n∆++ and pp → p∆+ simulations, especially after in-
cluding the resolution effect. This is shown in fig. 5.2 where the dashed red curves show the
simulation without resolution effects. In particular, the rise of the Minv(n, π+) at the low mass
side and to a lesser extent the tail of the Minv(p, π+) at the high mass side (see red curves in fig.
5.2) are better reproduced when resolution effects are included. In these regions, the protons have
indeed average higher momenta, therefore the resolution effect is expected to be more important.
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Fig. 5.3 – Left : (p, π+) and Right : (n, π+) invariant mass distributions compared to Pluto
simulation according to resonance model. The simulated spectra are normalized to the same
total yield as the measured one.

The cross section of the pp → npπ+ reactions measured in the HADES acceptance has been
extracted to be 0.91 mb by an integration through all the data points. It is found to be 10%
less than in the simulation. However one has to keep in mind that we have in total an error
of about 6% on the normalization (see section 4.7). In addition, this simulation is based on a
fit of cross-sections which have a precision of about 10 − 15% in our energy range [Teis et al.,
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82 CHAPITRE 5. RESULTS OF PP → NPπ+ REACTION AT 1.25 GEV

1997] (see fig. 1.9). So, the agreement with this ”standard” simulation (called standard Pluto
simulation in the rest of this thesis) is already quite satisfactory.

Figure 5.3 shows a direct comparison of the shape for both invariant mass distributions by
normalizing the simulation to the same total yield as the measured one. Due to the dominance
of the ∆++ in this channel, only the (p, π+) invariant mass shows a resonance structure. Pluto
simulation provide a reasonable description of the shape of these spectra. Some discrepancy can,
however, still be found in both mass distributions, which we will investigate in more detail in
the following.

Unless otherwise specified, in the following part of this thesis the measured and simulated
spectra will always be normalized to the same total yield inside the HADES acceptance.

5.3 Proton-neutron final state interaction

In section 5.1, we have mentioned that a spot (like a comma) has been observed in the up-
per right corner of the Dalitz plot (see fig. 5.1), which is not taken into account by the Pluto
simulation. Seeing the special location of this spot on the Dalitz distribution, i.e. it corresponds
to the same (p,π+) and (n,π+) invariant mass, one can deduce that for each event in this region
the neutron and proton momenta are very close. It thus leads us to think about the Final State
Interaction (called FSI) between the neutron and the proton.
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Fig. 5.4 – Left : Sketch for the definition of k : the momentum of the proton or neutron in the
(p, n) center-of-mass system (corresponds to the half of the (p, n) relative momentum). Right :
The reconstructed k distribution in pp → npπ+ reactions, for all measured events (black) and
the events in the ”comma” region (red).

In order to prove that, we firstly check the reconstructed proton momentun k (definition see
left panel of fig. 5.4) in the ”comma” area by requiring both (p, π+) and (n, π+) invariant mass
above 1.4 GeV/c2. Then we compare the k distribution in this specific region to the one for all
the events. As we can see in fig. 5.4, the total k distribution is peaked above 0.5 GeV/c while
the fraction in the ”comma” region occupies the very low k region (with a maximum yield below
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0.1 GeV/c).

A more detailed investigation has been performed by implementing the pn FSI using the
Jost function formalism in Pluto. Instead of taking into account the FSI effect in the produc-
tion amplitude [Titov et al., 2000], we calculate a weight applied directly on the cross section
[Froehlich et al., 2010] in the form of equation 5.1 :

WFSI =
1

|J(k)|2 = |k + iα

k + iβ
|2

with α =
1

r0
(

√

1 − 2r0a
−1
0 + 1)

β =
1

r0
(

√

1 − 2r0a
−1
0 − 1)

(5.1)

where the k is proton or neutron momentun in the (p, n) reference frame as defined in fig. 5.4
(left), r0 = 2.75 fm and a0 = −23.768 fm for pn singlet taken from Titov et al. [2000]. With
this formula, one can calculate the probability to have the FSI (noted as WFSI) as a function
of k as shown in the left panel of fig. 5.5. It shows that the high WFSI values concentrate in the
low k region and it converges towards 1 when k is increasing. Seeing the k distribution for events
measured in the HADES acceptance (fig. 5.4) and the correlation given by equation 5.1, one can
conclude that the majority of events detected by HADES are not in a kinematical region where
FSI play a significant role.
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Fig. 5.5 – Left : Weight of proton-neutron final state interaction WFSI as a function of mo-
mentum k. Right : Simulated Dalitz plot in 4π of the pp → n∆++ → npπ+ reaction, weighted
by WFSI .

To see the sensitivity of the Dalitz distribution to FSI, we plot the simulated 4π Dalitz plot
based on the resonance model with the implementation of FSI (right panel of fig. 5.5). In prac-
tice, we simply weight the events by WFSI . In the right panel of fig. 5.5, we obtain the 4π Dalitz
plot including FSI effect and an enhancement appears in the very extreme end of the diagonal
where (p, π+) invariant mass squared equals (n, π+) one.
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This effect is much clearer after the acceptance cut. The spot appearing at high invariant
masses in fig. 5.6 confirms at least qualitatively the FSI observation.

]2)2) [(GeV/c+π(p,inv
2M

1 1.5 2 2.5

]2 )2
) 

[(
G

eV
/c

+ π
(n

,
in

v
2

M

1

1.5

2

2.5

0

50

100

150

200

250

300
without FSI

]2)2) [(GeV/c+π(p,inv
2M

1 1.5 2 2.5
]2 )2

) 
[(

G
eV

/c
+ π

(n
,

in
v

2
M

1

1.5

2

2.5

0

50

100

150

200

250

300with FSI

Fig. 5.6 – Simulated Dalitz plot of the pp → npπ+ reaction : (n, π+) against (p, π+) invariant
mass squared distribution in HADES acceptance. Left : Pluto simulation based on the resonance
model and Right : Pluto simulation based on the resonance model weighted by WFSI . The
resolution effect is included.
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Fig. 5.7 – Left : (p, π+) and Right : (n, π+) invariant mass distributions compared to Pluto
simulation in pp → npπ+ reactions in HADES acceptance. The dashed line presents the standard
Pluto simulation and the solid line shows the Pluto simulation with the FSI effect.

Then the measured invariant mass spectra are compared to the simulation with the FSI
effect as shown in fig. 5.7. We would like to stress that the FSI effect is treated in a crude way
in our analysis. However, the difference of the shape in the simulations is obvious. The FSI
implementation gives more weight to the large invariant masses for both spectra. The shoulder
at 1.45 GeV/c2 can be clearly seen now. Despite the still existing discrepancy, the FSI is clearly
needed and will be included in the simulation of the pp → npπ+ channel in the rest of this work.
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5.4 Sensitivity to the N ∗(1440) contribution

In the previous sections, we observed the dominance of ∆(1232) resonance production in p+p
reaction at 1.25 GeV. In this energy range, however, other contributions, such as the N∗(1440),
are also present.

In the resonance model, the π production via the N∗(1440) resonance was obtained by Teis
et al. by fitting the one-π and two-π production cross sections. The result is 0.34 mb for the
pp → npπ+ (1.8% of the total cross section) [Teis et al., 1997]. This value is used in the Pluto
simulation and we use the production angular distribution taken from [Huber and Aichelin,
1994].

Based on preliminary data of the CELSIUS-WASA collaboration, an effective Lagrangian
approach predicted a N∗ contribution of 6 mb around 1.25 GeV, i.e. about 18 times as much
as in the Teis fit, and a ∆ resonance contribution of about 14 mb [Zhen et al., 2009]. Seeing
the (p, π+) invariant mass spectrum (fig. 5.2), values differing that much from Teis fits can be
clearly excluded by our analysis. They seem also not to be confirmed by more recent WASA re-
sult ([Skorodko, 2009]), where the N∗ contribution is found to be 2.3% of the total cross section.
Though it is still higher than the value 1.8% found in the Teis fit, as can be deduced from fig.
5.2 our data are not sensitive to different N∗(1440) contributions within a factor 2 or 3.

Further constraints on the N∗ contribution can be obtained from the two-π measurements.
Some of the results were not included in the Teis systematics, as [Shimizu et al., 1982], or were
performed afterwards [Skorodko, 2009]. For the dominant pp → ppπ+π− and pp → pnπ+π0 cross
section about a factor 2 higher than the Teis systematics have been measured [Shimizu et al.,
1982]. If these data were included in the Teis fits, higher values for N∗ would be obtained.

Since our npπ+ data are not very sensitive to this contribution, we did not investigate it
further. It would however be more important for the study of the pp → ppπ+π− channel, which
is also in progress in the HADES collaboration.

5.5 Sensitivity to non-resonant contribution

The sensitivity to the direct production of pions without any intermediate resonant state
(so called non-resonant contribution) has been checked using a pure phase space simulation in
pp → npπ+ channel. The same test should be also done in the pp → ppπ0 channel, with a

correlation σnon−res
ppπ0 =

1

2
σnon−res

npπ+ which can be indeed deduced from the isopin coefficients of

the NNπ vertex given in Appendix A. In the Teis fit, the same correlation between the npπ+

and ppπ0 channel has been assumed and both cross sections are found to be 0 for
√

s > 2.3 GeV.

0.4 mb of non-resonant contribution in 4π is added in our simulation for the npπ+ channel.
This corresponds to about 2% of the total cross section and can be taken as a maximum con-
tribution, considering the precision of the previous data. The result is shown in fig. 5.8, where
data are compared to simulations with and without additional non-resonant contribution. Due
to the HADES acceptance, the non-resonant contribution gives a flat distribution on the (n, π+)
invariant mass whereas it causes a small bump around 1.4 GeV/c2 in the (p, π+) invariant mass
spectrum. The shape of the (p, π+) invariant mass is therefore more sensitive to the non-resonant
contribution. More tests about the influence from this contribution will be shown in section 5.6
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and 5.7.3.
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Fig. 5.8 – Left : (p, π+) and Right : (n, π+) invariant mass distributions compared to standard
Pluto simulation (red solid line) and the simulation with additional non-resonant contribution
(red dashed line). The non-resonant contribution is presented by grey dashed line.

5.6 Neutron angular distribution

The neutron angular distribution in the center-of-mass system is directly related to the an-
gular distribution of the ∆ resonance production because pp → n∆++ is the dominant process
(left panel of fig. 5.9).

The distribution in the HADES acceptance has been compared with the simulation, as shown
in fig. 5.9. Like for the mass spectra, the vertical error bars present the quadratic sum of statis-
tical and systematic errors. But in the case of the neutron angular distribution the systematic
error caused by event selection is included with a dependence along cos θCM

n as mentioned in
section 4.2.3. The errors caused by the trigger condition correction procedure play a more im-
portant role rather in the forward emitted neutron region, but they can hardly be seen due to
the log scale. Note that the fluctuations in the simulation are due to their limited statistics only.

The neutron angular distribution is found to be asymmetric with respect to cos θn = 0.
This is expected due to the lack of detector acceptance for positively charged particles emitted
below 14o. This effect is on overall well reproduced by simulation, which confirms the good con-
trol of the acceptance. The comparison shows globally a rather good agreement between data
(black points) and simulation (red solid line). Still, the discrepancy can be seen for the extreme
backward neutron angles (cos θn = −1) and in the central region (| cos θn| < 0.5). The neutron
angular distribution is too much peaked in the simulation with respect to the data. Due to the
dominance of ∆++ production, the natural explanation could be a too much peaked ∆++ (so
for ∆+) production angular distribution.

In the following, we will discuss possible explanations which can help to improve the agree-
ment between simulation and data.
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Fig. 5.9 – Left : Sketch of the definition of neutron angle θn in the p + p center-of-mass
system. Right : Angular distribution of neutron in the p + p center-of-mass system measured
in pp → npπ+ reactions at 1.25 GeV. Data (black points) compared to simulations. Standard
Pluto with FSI simulation (red solid line) including ∆++ (blue), ∆+ (orange) and N∗ (green) ;
version of Pluto simulation (red dashed line) with additional non-resonant contribution (grey
dashed line).

– Influence from the N∗ and non-resonant contribution ;

First of all, similarly to the tests performed to the invariant mass distributions (see section
5.2), the sensitivity to other contributions has been studied using simulation. In particular, the
influence from a non-resonant contribution has been tested because its cos θCM

n distribution is
found to be much flatter than that from the resonance contributions. By adding a non-resonant
π production contribution with σ = 0.4 mb the simulation gets closer to the data points as
seen on fig. 5.9. Even though, it can not fully explain the discrepancy. On the other hand, the
cross section assumed here for the non-resonant contribution can not be larger since it is also
constrained by the invariant mass distribution (see section 5.7.3).

– Limits of the OPEM ;

Then, the simulation performed in our analysis is based on the resonance model where the
one-π exchange for ∆ production is assumed. We have to point out that, in the region of the
excess, the t and u four-momentum transfer squared are the highest (see section 3.2.3). Thus
other mechanisms, as ρ exchange, might become more important in this region.

– Cut-off parameter Λπ ;

Following the previous point, since we are sensitive to the four-momentum transfer in this
region, we can test this sensitivity using the cut-off parameter Λπ involved in the OPEM. As
introduced in the description of ∆ production in section 3.2.3, the form factor of the πN∆ vertex
is parameterized simply as

F (t) =
Λπ

2 − m2
π

Λπ
2 − t

(5.2)

where mπ is the mass of the exchanged pion, t is the squared four-momentum transfer. Fol-
lowing equation 5.2, one can conclude that the higher Λπ is, the larger transfers are allowed.
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In [Dmitriev and Sushkov, 1986], Λπ = 0.63 GeV is adjusted to give the best description of
pp → p∆++ reaction at proton kinetic energies from 0.97 to 2.02 GeV. Because our data are
exactly in this energy range, it is worthwhile to perform the test with different Λπ value consid-
ering the big error bars in the previous measurements (see fig. 1.6).
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Fig. 5.10 – Left : Simulated 4π angular distribution of neutron in the p+p center of mass system
measured in pp → n∆++ reactions at 1.25 GeV with different Λπ values (Red : Λπ = 0.63 GeV,
Orange : Λπ = 0.70 GeV, Green : Λπ = 0.75 GeV and Blue : Λπ = 1.20 GeV). Right : Angular
distribution of neutron in the p + p center of mass system measured in pp → npπ+ reactions at
1.25 GeV. Data (black points) compared to simulations with different Λπ values (Red : Λπ = 0.63
GeV and Green : Λπ = 0.75 GeV).

A series of Λπ values are then applied in the simulation. The maximum value we test here,
Λπ = 1.2 GeV, is used in the pp → npπ+ channel analysis of WASA. The (p, π+) invariant mass

distribution stays the same for different values of Λπ. But the cos θCM
n distribution shows a great

sensitivity (see left panel of fig. 5.10). Indeed, the larger Λπ value gives a less peaked cos θCM
n

distribution. It has to be noted that increasing the Λπ cut-off parameter results in principle in an
increase of the cross section for the pp → N∆ calculation in the OBE model which would dete-
riorate the agreement of OPEM calculations for the total cross section [Dmitriev and Sushkov,
1986]. Here in our simulation, we keep the cross section constant since our aim is just to get a
better parametrization of the angular distribution.

After going through the full analysis chain, the models are compared to the data. We found
that by assuming Λπ = 0.75 GeV, the simulation gives a better description of the data (see
right panel of fig. 5.10) in pp → npπ+. As mentioned above, this should just be taken as a way
to have a better description of the angular distribution. In addition, this new parametrization
should also be tested in the pp → ppπ0 channel.

– Lack of ∆++/∆+ interference in simulation.
Last but not least, the interference between ∆++ and ∆+, which is not included in our

simulation can also stand out in the central region where the relative contribution of ∆+ is the
highest. A more detailed discussion related to this aspect can be found in the next section.
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5.7 Differential Nπ invariant mass distribution

More detailed investigations have been performed by looking at the differential Nπ invariant
mass distribution as a function of the neutron center-of-mass angle. The FSI effect, the role
of the N∗ and non-resonant contribution, the influence from the cut-off parameter Λπ and the
∆++/∆+ contribution will be shown in the following.

In practice, we divide cos θCM
n into 10 slices from -1 to 1. In each interval, the measured

Minv(p, π+) and Minv(n, π+) are compared to the simulation with different assumptions.

The data are shown in the following pictures by open circles (see fig. 5.11 and 5.12). Vertical
error bars denote the statistical and systematic errors which are defined in the same way as on
the integrated spectra in fig. 5.2. The error bars are smaller than the size of the symbols for
most of the bins. The large error bars appearing at the maximum of the spectrum in the last
slices of the Minv(n, π+) spectra are due to the correction of trigger cut. The jumps visible in
this region are also due to this correction but stay within the error bars. As in previous sections,
the simulation is normalized to fit the total yield measured in the HADES acceptance for each
bin. In other words, there is only one global normalization factor (of the order of 0.9).

5.7.1 Comparison to a simulation with FSI effect

First of all, the behavior of the FSI effect is checked. The measured differential mass spectra
are compared to both a standard Pluto simulation (light blue curves) and a Pluto simulation
with FSI effect (red curves) (see fig. 5.11 and 5.12).

As already seen in the global neutron angular distribution (fig.5.9), the Pluto simulation over-
estimates the data for the forward and backward neutron angles with respect to cos θCM

n = 0.
However, it reproduces in general reasonably well the shapes of spectra for all the slices. The
evolution of these shapes is mainly due to the acceptance and kinematics, and is rather well
reproduced by the standard simulation.

The FSI (red line) implementation significantly improves the agreement between simulation
and data. As explained in section 5.3, the FSI effect plays an important role mainly in the very
high mass region. One can indeed see that the low mass region (Minv < 1.3 GeV/c2) is not
much affected by the FSI. But the peaks in the high mass region (Minv > 1.3 GeV/c2) are
nicely reproduced. Those peak structures in both invariant mass spectra are essentially due to
the acceptance effects and FSI.
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Fig. 5.11 – (p, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simulation.

The simulation based on the standard resonance model is drawn in blue and the simulation with
FSI implementation is drawn in red.
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Fig. 5.12 – (n, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simulation.

The simulation based on the standard resonance model is drawn in blue and the simulation with
FSI implementation is drawn in red.
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5.7.2 ∆++ and ∆+ contributions

As mentioned in section 5.2, in the pp → npπ+ reaction at 1.25 GeV the main contributions
come from the ∆++, ∆+ and N∗(1440) resonances. According to Teis fits, the ∆++ contributes
90% of the total cross section.

Now we will discuss the role of different resonance contributions using the differential invari-
ant mass spectra (see fig. 5.13 and fig. 5.14). In general, the ∆++ gives a dominant contribution
for any neutron angle. The ∆+ contribution is higher for Minv(p, π+) above 1.3 GeV/c2, however
the ∆++ remains dominant, so that the ∆+ contribution can not really be selected using an
invariant mass cut.

Since in Pluto simulations the ∆++ and ∆+ are added incoherently, one can ask the question
whether the interference between ∆++ and ∆+ production amplitude can be at the origin of
the disagreement between the data and the simulation. The proportion of ∆++ and ∆+ indeed
depends on the neutron angular distribution. In the large neutron angle region the ∆+ contri-
bution is much higher than elsewhere, therefore the interference between ∆++ and ∆+ could be
also more important.

In the analysis of the CELSIUS-WASA data [Skorodko, 2009], an arbitrary phase between

the ∆++ and ∆+ amplitudes, φ =
3π

4
was introduced to better describe the data.

However, in principle, these interference effects derive from the calculation of the complex
amplitudes. It would be interesting to compare these differential spectra to a full calculation
including ∆++, ∆+, N∗(1440) and non-resonant contributions in a coherent way.
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Fig. 5.13 – (p, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simulation

with FSI implementations. Total contribution is drawn in red, ∆++ in blue, ∆+ in orange and
N∗ in green.
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Fig. 5.14 – (n, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simulation

with FSI implementations. Total contribution is drawn in red, ∆++ in blue, ∆+ in orange and
N∗ in green.
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5.7.3 Influences from the phase-space contribution

We have introduced the non-resonant π+ contribution in the previous sections. In section
5.5, we compared the integrated invariant mass spectrum to a simulation with an additional
non-resonant π+ production using a phase-space contribution. Due to the strong dominance of
the ∆++, the data do not show any sensitivity to this contribution. Then in section 5.6, the same
test has been applied to the neutron angular distribution and an improvement of the description
around cos θCM

n = 0 has been found.

In this section, we will correlate the invariant mass and neutron angular distributions and
compare the simulation with an additional non-resonant contribution to the mass spectra by
slices in neutron angles. In this context, we can check if a bigger sensitivity to a non-resonant
contribution can be found.

The shape of the (n, π+) invariant mass distribution is in fact not very much affected, even
around cos θCM

n = 0. As already stressed, the (p, π+) invariant mass distribution of this non-
resonant contribution is very broad with a peak around 1.45 GeV/c2, due to acceptance. This
remains true at any neutron angle. The phase-space contribution therefore enhances the yield
for high invariant mass.

One has to mention, that non-resonant contributions can deviate from phase-space. For ex-
ample, the emission of pions from the graphs involving only nucleons can be described in OBE
model. In addition the interference effects with the resonant contribution can also come into play.
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Fig. 5.15 – (p, π+) invariant mass distributions in slices of cos θCM
n compared to standard Pluto

simulation (red solid line) and the simulation with additional non-resonant contribution (grey
solid line). The added non-resonant contributions is presented by grey dashed line.
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Fig. 5.16 – (n, π+) invariant mass distributions in slices of cos θCM
n compared to standard Pluto

simulation (red solid line) and the simulation with additional non-resonant contribution (grey
solid line). The added non-resonant contributions is presented by grey dashed line.
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5.7.4 Sensitivity to the cut-off parameter Λπ

In section 5.6, we have adjusted the cut-off parameter Λπ to the value 0.75 GeV to describe
better the neutron angular distribution, while keeping the total cross section constant. Now the
simulation with this new parametrization (green line) is checked for the differential mass spectra
for both (p, π+) (fig. 5.17) and (n, π+) (fig. 5.18) where a more strict constraint is expected.

The better description of the yields as a function of cos θCM
n is due to the smoother neutron

angular distribution with Λπ = 0.75 GeV, which is expected from fig. 5.10. Because of the ac-
ceptance effect, there is also a change of the shapes, more precisely a relative enhancement of
low invariant masses. A good agreement is now reached around cos θCM

n = 0, both at the level
of the yields and of the shapes.

As a conclusion, in general, the Λπ = 0.75 GeV gives a pretty good improvement to the
model not only for the global neutron angular distribution, but also for the differential Nπ mass
spectra. Nevertheless, some discrepancies e.g. in slices of 0.4 < | cos θCM

n | < 0.6 can still be found.
For these bins, the modified model yields a too much pronounced peak at lower invariant masses.

98



5.7. DIFFERENTIAL Nπ INVARIANT MASS DISTRIBUTION 99

]2) [GeV/c+π(p,invM

)]2
) 

[m
b/

(G
eV

/c
+ π

(p
,

in
v

/d
M

σd

HADES data

=0.63 GeV) with FSIπΛPluto simulation (

=0.75 GeV) with FSIπΛPluto simulation (

1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

 −0.8≤ nθ−1.0<cos 

1 1.2 1.4 1.60

0.2

0.4
 −0.6≤ nθ−0.8<cos 

1 1.2 1.4 1.60

0.1

0.2

0.3

 −0.4≤ nθ−0.6<cos 

1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2  −0.2≤ nθ−0.4<cos 

1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2  0.0≤ nθ−0.2<cos 

1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2  0.2≤ nθ0.0<cos 

1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2  0.4≤ nθ0.2<cos 

1 1.2 1.4 1.6
0

0.1

0.2

 0.6≤ nθ0.4<cos 

1 1.2 1.4 1.6
0

0.2

0.4

 0.8≤ nθ0.6<cos 

1 1.2 1.4 1.60

1

2

3

4

 1.0≤ nθ0.8<cos 

Fig. 5.17 – (p, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simulations

with FSI effect and different cut-off parameters. The simulation based on the standard resonance
model with FSI and Λπ = 0.63 GeV (red) and simulation with FSI and Λπ = 0.75 GeV (green).
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Fig. 5.18 – (n, π+) invariant mass distributions in slices of cos θCM
n compared to Pluto simu-

lations with FSI effect and different cut-off parameters. The simulation based on the standard
resonance model with FSI and Λπ = 0.63 GeV (red) and simulation with FSI and Λπ = 0.75
GeV (green).
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5.7.5 Conclusion for the tests with the differential Nπ invariant mass distri-
bution

From the investigations performed with the differential Nπ invariant mass distributions, the
conclusions drawn from the integral spectra are confirmed.

The FSI is clearly observed and our simple calculation is able to improve the description of
the data. However, it should be taken into account at the level of the amplitudes.

The sensitivity to ∆+, N∗ and a non-resonant contribution is indeed small. The change of
shape of the invariant mass spectrum (visible both for the spectra in the cos θCM

n slices and for
the integrated spectrum) shows the sensitivity of the measured invariant mass distribution to
the details of the production model, which makes even more delicate the control of the N∗(1440)
or non-resonant amplitudes. However it seems that these contributions can not be larger than
0.4 mb. Last but not least, it is important to point out that any conclusion drawn from the
pp → npπ+ spectra should be always simultaneously validated by the pp → ppπ0 channel.

This study also confirms that the lack of events around cos θCM
n = 0 seems to be related to

a too small ∆ production angular distribution in the simulation rather than non-resonant con-
tributions or stronger interference effects. It has however to be stressed that these conclusions
are drawn from a very crude model and would have to be checked in a full calculation with all
amplitudes taken into account in a consistent way.
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5.8 ∆ decay angular distribution

In pp → npπ+ reactions, the π+ angular distribution in the (p, π+) reference frame can be
used to study the ∆ decay angular distribution, with the z-axis taken as the direction of (p, π+)
pair in lab. system (see section 3.2.4).

Following this, the π+ angular distribution has been reconstructed and is shown as black
dots on fig. 5.19 (left panel). The forward and backward π+ are strongly cut by the HADES
acceptance.
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Fig. 5.19 – π+ angular distribution in the (p, π+) reference frame in pp → npπ+ reactions in
HADES acceptance. Different ∆ decay angular distributions are implemented in the form of
1 + A cos2 θ. Blue : pure OPEM A = 3, red : Wicklund’s parametrization A = 0.66 and green :
isotropic decay : A = 0. The orange one is based on the Wicklund’s parametrization and uses
Λπ = 0.75. Left : integrated over cos θCM

n range and Right : in the region where cos θCM
n > 0.8.

The data are first compared to the standard Pluto simulation with Wicklund’s ∆ decay an-
gular distribution (red curve). As we are here discussing the shapes of the angular distribution,
the simulation is normalized to the same total yield as the data. The agreement is reasonable.

The sensitivity of this distribution to the ∆ production angular distribution is also inves-
tigated by comparing the results of the Pluto simulations using either the standard one-pion
exchange cut-off parameter from Dmitriev Λπ = 0.63 GeV (red) or a larger one Λπ = 0.75 GeV
(yellow) which better fits our neutron angular distribution (see section 5.6). The change of the
distribution is small but still visible.

Then we have tested the sensitivity to different decay models using the Λπ value 0.75 GeV
which gives better agreement for the neutron angular distribution. The simulation with A = 3
(blue) clearly does not reproduce the data, a so strong anisotropy of the ∆ decay can therefore
be excluded from our data. Both the A = 0.66 (yellow) and the A = 0 (green) ∆ decay give a
fairly good agreement with this π angular distribution.

To increase the sensitivity to the ∆ decay angular distribution, a supplementary condition
cos θCM

n > 0.8 is imposed. As mentioned in section 3.2, in this condition, the direction of the
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(p, π+) system in the lab is close to the momentum transfer in the N−∆ transition, which favors
the ∆++ excitation from the target. Therefore the sensitivity to the decay models is expected
to be the strongest (see fig. 3.3).

From fig. 5.19 (right panel), we see that the sensitivity is indeed stronger in the simulation,
and again the simulation with anisotropy (A=3) is clearly in disagreement with the data. Note
that no dependence on Λπ is observed, because in a small slice of neutron angle the dependence
on ∆ production angular distribution is negligible. But the agreement with the data becomes
also worse than when integrated over cos θn for the two other models. This is not fully satisfac-
tory and shows the limit of our simple model.

One could conclude from this study that our data are compatible on average with a small
anisotropy of the ∆ decay 0 < A < 0.85. Due to the limited HADES acceptance, the anisotropy
parameter cannot be extracted more precisely than in the previous experiments, like for example
in [Bacon et al., 1967], [Wicklund et al., 1987]. We can mention meanwhile that the isotropic
decay angular distribution used in transport models is still a reasonable hypothesis.

Simulation type Acceptance σ in acceptance
[%] [mb]

Pluto + (Λπ = 0.63 GeV) + (A=0.66) (standard) 5.26 1.01 ± 0.10
Pluto + FSI + (Λπ = 0.63 GeV) + (A=0.66) 5.33 1.03 ± 0.10
Pluto + FSI + (Λπ = 0.63 GeV) + (A=0) 5.84 1.12 ± 0.11
Pluto + FSI + (Λπ = 0.63 GeV) + (A=3) 4.45 0.86 ± 0.09
Pluto + FSI + (Λπ = 0.75 GeV) + (A=0.66) 5.15 0.99 ± 0.10
Pluto + FSI + (Λπ = 0.75 GeV) + (A=0) 5.60 1.08 ± 0.11
Pluto + FSI + (Λπ = 0.75 GeV) + (A=3) 4.38 0.84 ± 0.08

HADES Data 0.91 ± 0.07

Tab. 5.1 – Global HADES acceptance for the pp → npπ+ channel data at 1.25 GeV with
different simulation parametrization and corresponding cross sections in the HADES acceptance
using the total cross section σpp→npπ+ = 19.24 ± 1.92 mb in 4π from Teis.

We now assume that the pp → npπ+ cross section given by Teis is a good fit of the previous
experimental data and has a precision of 10%. The yield in the HADES acceptance will vary
depending on the models, as shown in table 5.1. One can see that the simulations with A = 0
(3rd line and 6th line) give a yield which is higher by 20% than the HADES data. So, one can
consider that this extreme case is less favored.

Table 5.1 also shows the sensitivity of the acceptance to different models we have discussed
before. This will be used to estimate the systematical errors on the acceptance correction (see
section 5.9).

As a conclusion, using the cross sections measured in other experiments and taking into
account both the shapes of the π+ angular distributions and the yields measured in the HADES
acceptance, we confirm the anisotropy of the ∆ decay angular distribution of the order of 0.6.
This anisotropy has already been implemented in the Pluto event generator and could also be
implemented in transport models.

One should however stress that this anisotropy is just a parameter in the two-step model,
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where production and decay of the ∆ resonance are treated independently. This is a very crude
approximation that is needed in transport models aiming at describing heavy-ion collisions. This
anisotropy is related to the spin structure of the N − ∆ excitation. In a full calculation of the
nucleon-nucleon collision, the π angular distribution would come out naturally. Here we would
like to stress again the need to compare the data to a full model calculation with all interference
effects.

5.9 Acceptance correction for invariant masses and neutron an-
gular distributions

In order to have physical spectra which are independent from the experimental set-up, it
is useful to provide acceptance corrected distributions. This implies an extrapolation into the
regions of phase space which are not covered by the detector. The problem is that this extrap-
olation requires the use of a model.

In our analysis, a pretty accurate acceptance correction procedure has been developed. The
principle of this correction is explained in section. 4.6. The improved Pluto simulation (noted as
new Pluto simulation) based on the resonance model with one-π exchange assumption is used
here for acceptance correction :

- the production of ∆++, ∆+ and N∗ is included with cross sections 17.0 mb, 1.9 mb and
0.34 mb, respectively ;

- the cut-off parameter is set to Λπ = 0.75 GeV for ∆ production ;
- the decay anisotropy of the ∆ is taken in the form of 1 + 0.66 · cos2 θ ;
- proton-neutron FSI is implemented.
We will show in the following the neutron angular distribution and (p, π+) invariant mass

distribution corrected for acceptance and evaluate the related systematical errors.

5.9.1 Neutron angular distribution in 4π

For the neutron angular distribution in the center-of-mass system, a one-dimensional correc-
tion is considered as a first step. Following equation 4.14, the correction factor is calculated as
the ratio of the simulated yields in 4π and in HADES for a given cos θCM

n (left panel of fig. 5.20).

The bin size is optimized mainly according to the variation of the detector acceptance. In the
forward neutron angle region, the bin size can be kept small in order to have precise spectra. In
the backward neutron angle region, the bin size is set to be larger to keep a sufficiently precise
correction.

The correction factor is about 25 on average. The smaller values down to below 10 are found
for forward neutron angles, while a quite big value of 55 is obtained at very backward angles
(due to the low acceptance in this region). The distribution of correction factors is rather smooth
in the region −0.8 < cos θCM

n < 1. But they vary rapidly in the first two bins (cos θCM
n < −0.8).

The one-dimensional corrected cos θCM
n spectrum is shown in fig 5.21 by blue triangles. By

doing the acceptance correction, a very forward and backward peaked distribution is recovered.
It is found to be almost symmetric with respect to cos θCM

n = 0. This is an important result
which proves that the acceptance correction is well under control.
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However, the validity of this acceptance correction depends on the validity of the distribu-
tions for variables other than the neutron angle. The main dependence is considered for two
variables : the invariant mass distribution and ∆ decay angular distribution.
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Fig. 5.20 – Acceptance correction factor deduced from the simulation and used for the center-
of-mass neutron angular distribution correction. Left : One-dimensional correction factor cal-
culated in cos θCM

n bins and Right : Two-dimensional correction factor calculated in (cos θCM
n ,

Minv(p, π+) bins.

To reduce the model dependence on the (p, π+) mass distribution, a two-dimensional accep-
tance correction has been performed as a second step. The correction factor is calculated in the
same way as for the one-dimensional case, as a ratio of simulated yield in 4π and in HADES for
a given cos θCM

n bin and Minv(p, π+) bin (see right panel of fig. 5.20). Then the new factors are
applied to correct the data. The bin width in cos θCM

n is kept the same as in the one-dimensional
case and for Minv(p, π+) the bin width is again adjusted to optimize the precision of the correc-
tion.

The black dots in fig. 5.21 represent the final neutron angular distribution in the center-of-
mass frame in 4π after applying two-dimensional corrections. These results are consistent with
the ones obtained with the one-dimensional correction (blue triangles). The two-dimensional
correction reduces the model dependence of the correction due to the averaging over the (p, π+)
invariant mass distribution, but as the model reproduces rather well the mass distribution, the
effect is small.

With the two-dimensional correction, the symmetry of the angular distribution is also better
recovered. We take the two-dimensional corrected spectrum as the final spectrum. The corre-
sponding errors are estimated as following and are summarized in table 5.2.

– First, the errors on the data measured in the HADES acceptance (see section 4.7) have to
be scaled by the acceptance factor.

– Then, we consider the error due to the precision of the acceptance factors, due for example
to possible dead zones at the edges of the detector. Following the variation of the acceptance
factors as a function of cos θCM

n (see fig. 5.20 left), we estimate the relative error on the
acceptance correction factor to be 10% for the first bin (cos θCM

n < −0.8), 5% for the
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Fig. 5.21 – Angular distribution of the neutron in the center of mass system after acceptance
correction. Data corrected with one-dimensional (blue triangles) and two-dimensional (black
dots) factors compare to the standard Pluto simulation (red dashed line) and the new adjusted
Pluto simulation (green solid line).

second bin (−0.8 < cos θCM
n < 0.6) and 2% for the other bins. These errors are included in

the error bars in the spectrum of fig. 5.21 and are considered as independent from one bin
to another. In addition, a 3% global error is estimated, which takes into account a global
uncertainty on the correction, due to possible systematics effects independent on neutron
angle.

– Last but not least, the error due to the ∆ decay angular distribution is estimated using
two different ∆ decay anisotropies A = 0.66 and A = 0. Although A = 0.66 is favored by
previous data and by our measured yield (see section 5.8), the different correction factors
obtained for A = 0 can be used to estimate the maximum error due to the uncertainty in
the ∆ decay angular distribution. In practice, we calculate firstly the acceptance correc-
tion factor using both decay anisotropies A = 0.66 (black histogram fig. 5.20) and A = 0
(pink histogram). Secondly, we calculate for each bin the relative difference of the correc-
tion factors and smear the obtained values to obtain a smooth distribution. Thirdly, the
smeared values are scaled by 1/

√
3 assuming equal probabilities between A = 0.66 and

the extreme case. Finally, we apply the smeared value as the systematic error related to
the decay angular distribution for each corresponding bin in fig. 5.21. The dependence on
decay anisotropy has also a global effect of 4.3%, which is taken into account for the errors
on the total cross section.

The three types of systematic errors are added quadratically for each bin and the result is
shown in fig. 5.21. The statistical errors are negligible.

From the acceptance corrected spectra, a less steep ∆ production angular distribution is
clearly observed in the data in comparison with the standard Pluto simulation. The distribution
with larger cut-off parameter Λπ = 0.75 GeV (green curve) gives a better description to the data
which is fully consistent with our analysis done within the acceptance.
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Source of systematic error Point to point error Global uncertainty
[%] [%]

Measured data (in acceptance) 4.5 to 6 7.7

Acceptance correction factor 2 to 10 3

Model dependence (∆ decay) 2.7 to 6 4.3

Total 5 to 10.5 9.3

Tab. 5.2 – Systematic errors for the acceptance correction of cos θCM
n in pp → npπ+ reactions

analysis.

5.9.2 (p, π+) invariant mass in 4π

In the same way, the acceptance correction has been performed for the (p, π+) invariant mass
spectrum as well.

Instead of doing an average correction for a large bin, the choice is made to start the correc-
tion for invariant masses larger than 1.15 GeV/c2 because no precise correction can be performed
below 1.15 GeV/c2 due to the very small acceptance. Again, the bin widths are adjusted accord-
ing to the detector acceptance but in a slightly different way to obtain a precise shape of the
invariant mass spectrum. The correction factor decreases as a function of the (p, π+) invariant
mass (see fig. 5.22). In the region of 1.5 < Minv(p, π+) < 1.6 GeV/c2, the acceptance is zero,
but a few counts exist in the data due to the resolution effect. So the correction in this region
is done using the correction factor of the closest bin [1.475, 1.5 GeV/c2] and an average yield is
calculated for the mass range [1.475, 1.5 GeV/c2]. In addition,
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Fig. 5.22 – Correction factor for the (p, π+) invariant mass distribution. Left : One-dimensional
correction factor calculated in Minv(p, π+) bin by simulation and Right : Two-dimensional
correction factor calculated by simulation in (cos θCM

n , Minv(p, π+)) bin.

Fig. 5.23 shows the acceptance corrected Minv(p, π+) spectrum compared to the simulation.
The spectrum corrected with the two-dimensional factor results in a slightly higher yield with
respect to the one-dimensional corrected one, but the results are still consistent. As for the
neutron angular distribution, we consider the spectrum obtained with two-dimension factors as
the final spectrum and estimate error bars. The procedure is very similar to the one for cos θCM

n
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Fig. 5.23 – The (p, π+) invariant mass distribution in 4π. Data corrected with one-dimensional
(blue triangles) and two-dimensional (black dots) factors compared to Pluto simulations : stan-
dard (red dashed line) and new (green solid line).

distribution and the errors are summarized in table 5.3.

The systematical error due to the variation of correction factor as a function of invariant
mass is estimated to be 4% for the first bin (1.15 < Minv(p, π+) < 1.17 GeV/c2) and 2% for the
other bins. The related global error (independent of invariant mass) is estimated to be 2%. The
uncertainty on correction factors depending on the ∆ decay models is set constantly to be 4.3%
along Minv(p, π+), since we found that the influence from changing the decay anisotropy is only
a scaling of the ∆ mass distribution.

Source of systematic error Point to point error Global uncertainty
[%] [%]

Measured data (in acceptance) 4.5 to 12 7.7

Acceptance correction factor 2 to 4 2

Model dependence (∆ decay) 4.3 4.3

Extrapolation 3

Total 6 to 15 9.5

Tab. 5.3 – Systematical errors for the acceptance correction of Minv(p, π+) in pp → npπ+

reactions analysis.

The measured Minv(p, π+) peak is shifted by 10 MeV/c2 towards low masses in comparison
with the simulation. The origin of this shift is unknown. The energy calibration can be checked
within 2-3 MeV using the missing mass spectrum at the neutron mass. The simulated distribu-
tion is also slightly broader than the measured one. The tail of mass distribution on the right
hand side goes further in the case of data. This is consistent with the result in the HADES ac-
ceptance (fig 5.2) and shows that the resolution effect is not fully reproduced in the simulation.
One can also notice that the main effect of the change in the Pluto simulation is a small bump
at high (p, π+) invariant masses due to the FSI.
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5.10 Cross section of the pp → npπ+ reaction at 1.25 GeV

The total cross section of the pp → npπ+ reaction at 1.25 GeV has been extracted from our
data. The principle to obtain this value is to correct the measured cross section for acceptance
using the simulation.

As mentioned in section 4.6, two kinds of methods have been used in our analysis :
- Using the global acceptance factor ;
- Integrating the acceptance corrected spectrum.

The first method, i.e. using the global acceptance factor, is applied by assuming that the average
acceptance for the measured data can be deduced from the simulation. So the measured total
cross section can be calculated by dividing the measured cross section in the acceptance by the
global factor. From table 5.1, one can see that these global factors depend significantly on the
model. We use here the new Pluto simulation which gives the best description of the data and
we obtain a total cross section of the pp → npπ+ reaction at 1.25 GeV of σ = 17.67 mb.

The second method is based on the acceptance corrected spectra mentioned in section 5.9.
The total cross section value extracted using this method is considered to be more realistic
because the dependence on models is reduced with respect to the first method. The acceptance
correction is done for the neutron angular distribution and for the (p, π+) invariant mass distri-
bution. One can extract the total cross section from these two spectra.

In the case of the neutron angular distribution in the center-of-mass system, the correction
is achieved for all the bins, thus the total cross section can be extracted by a simple integration.
The systematic errors can be found in table 5.2.

In the case of the (p, π+) invariant mass distribution, a precise correction can not be made in
some bins where the acceptance is very low (Minv(p, π+) < 1.15GeV/c2). As a consequence, an
extrapolation has to be done using the simulation in this region. We estimate the related error
by varying a little bit the limits of the region in which we apply the extrapolation. It results in
3% uncertainty for the total cross section, as indicated in table 5.3.

In table 5.4 we summarize the different values of the total cross section that can be deduced
from the HADES measurements for pp → npπ+ reactions at 1.25 GeV. Consistent values can be
found for all correction procedures within error. The final value σ = 18.17±1.85 mb is obtained
using the average value deduced from the integration of cos θCM

n and Minv(p, π+) spectra and
taking the maximum error.

Acceptance correction method σTotal [mb]

Global Correction 17.30

cos θCM
n (1-dim) 17.53

cos θCM
n (2-dim) 18.32 ± 1.70

Minv(p, π+) (1-dim) 17.27

Minv(p, π+) (2-dim) 18.02 ± 1.71

Tab. 5.4 – Total cross section of the pp → npπ+ reaction measured by HADES at 1.25 GeV.
The values are obtained with different correction procedures and the errors are only put for the
significant cross section values.
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5.11 Systematic comparisons of one-π channels in p + p runs at
1.25 and 2.2 GeV

A systematic study of exclusive one-pion production at 1.25 and 2.2 GeV for both isopin chan-
nels pp → ppπ0 and pp → npπ+ has been realized by the HADES collaboration
[Ramstein et al., 2010]. These data analyses were mainly performed by the Krakow and Orsay
teams in HADES collaboration. In the following, a global comparison of the Dalitz distribution
and Nπ invariant mass will be shown. The data analysis for 2.2 GeV was performed by Marcin
Wísniowski [Wísniowski, 2009] and the analysis at 1.25 GeV is done by Anna Kozuch for the
pp → ppπ0 channel and myself for the pp → npπ+ channel.

5.11.1 Dalitz plots
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Fig. 5.24 – Dalitz plots of the pp → ppπ0 and pp → npπ+ reactions. The kinematical limit for
the pp → NNπ reaction is shown as a dashed line.

The Dalitz plots which allow to investigate the resonant behavior of the pion production are
shown in fig. 5.24. For the ppπ0 channel, an accumulation of yield for M2

inv(p, π0) = 1.5(GeV/c2)2,
corresponding to the excitation of the ∆+ resonance can be clearly seen at both energies. For
the npπ+ channel, the ∆++ signal stands out markedly at M2

inv(p, π+) = 1.5(GeV/c2)2, while
the ∆+ signal located at M2

inv(n, π+) = 1.5(GeV/c2)2 is less pronounced. The FSI is observed
as a spot appearing for M2

inv(p, π+) and M2
inv(n, π+) at 2(GeV/c2)2 in the npπ+ channel (for

details see section 5.3). This effect is absent in the same channel at 2.2 GeV due to the forward
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peaking of these events at angles below the acceptance limit and in the ppπ0 channel due to the
trigger configuration, requiring two charged particles detected in opposite sectors of the HADES
detector. Note that, in contrast to fig. 5.1, on these Dalitz plots the yields outside of the Dalitz
boundary are not shown.

5.11.2 Nπ invariant mass distributions

The projection on the (p, π0) and (n, π+) invariant masses and a comparison to a standard
Pluto simulation are exhibited in fig. 5.25. The error bars include statistical and systematical
errors which are mainly due to event selection. The trigger efficiency correction is also contribut-
ing to the systematical errors in the case of the pp → npπ+ channel at 1.25 GeV as discussed in
detail in section 4.3. This correction is however not needed for the other channels, since in this
case, always at least one of the two charged particles is hitting the TOF detector. The uncer-
tainty on the normalization to the pp elastic scattering is considered as a source of systematical
error (6% for 1.25 GeV and 11% for 2.2 GeV) but not included in the error bars here. In general,
both the yield and the shapes of the invariant mass distribution are consistent with the cocktail
from the resonance model. At 1.25 GeV, the relation σpp→npπ+ = 5 · σpp→ppπ0 is found, as
expected from the dominance of the ∆ resonance and the isospin factors in different ∆ decay
channels. At 2.2 GeV, this ratio is lower, about 3.5 due to the contribution of N∗ resonances.
The higher lying resonances, like N∗(1440) and N∗(1520), also play a significant role at 2.2 GeV.
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Fig. 5.25 – Nπ invariant masses measured in pp → ppπ0 and pp → npπ+ reactions at 1.25
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the pp → npπ+ reactions at 1.25 GeV/c, the dashed lines showing the simulation without FSI
effects.
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5.11.3 HADES ”homemade” cross section systematics for exclusive π+ and
π0 production in p + p reactions

The cross sections of the two one-pion production channels pp → npπ+ and pp → ppπ0 are
obtained by extrapolating the yield to the 4π acceptance using the simulation, or, when possible,
by integrating the acceptance corrected distributions (the case of the npπ+ channel at 1.25 GeV
in section 5.9 and 5.10).

The results are shown in fig. 5.26 together with existing data and with the resonance model
fits from Teis [Teis et al., 1997]. These plots are in fact a ”homemade” systematics. We made
the following changes with respect to the Teis systematics :

– We added the Shimizu points, [Shimizu et al., 1982] which were not included in the Teis
systematics. Some details of the experiments corresponding to these data were introduced
in section 1.5.1.

– We added a LAMPF point for pp → npπ+ at 0.8 GeV [Hudomalj-Gabitzsch et al., 1978],
although it has a quite large error bar.

– We added the newest HADES measurements.

It is worth mentioning that no cross section value is available for the WASA measurement at
the moment.

A global agreement of the HADES data with the resonance model and with the previous
data is observed. Especially, our pp → npπ+ cross section at 1.25 GeV is in full agreement with
the Shimizu results.
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Fig. 5.26 – Total cross section as a function of the center-of-mass energy
√

s for the left :
pp → ppπ0 and right : pp → npπ+ reactions measured with HADES (green squares) compared
to existing measurements (blue dots and red triangles). The lines show the resonance model fit
with different contributions (∆(1232)), I=1/2 and other I=3/2.

Other distributions, such as neutron and π angular distribution have also been extracted in
all of these channels. All results obtained at 2.2 GeV can be found in the PhD thesis [Wísniowski,
2009] and a paper which will describe the one pion and one eta production measurements in
p + p 1.25 and 2.2 GeV with HADES will be published in the near future.
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5.12 The π+ angular distribution in CM

In heavy-ion reactions, π angular distributions in the center-of-mass frame are studied to
investigate the thermalization of the system. Isotropic angular distributions are expected in the
case of a fully thermalized system, where the anisotropy of each individual collision is smeared.
However we must also consider that in heavy-ions collisions, the angular distribution of pions
(and other paticles) is influenced by collective effects (flow of nuclear matter) and by effects of
shadowing by spectator matter of target and projectile. These effects depend in addition to the
impact parameter.

As a reference to such studies, it is interesting to investigate the π angular distribution
anisotropies in NN collisions and to check how well they are reproduced by the resonance
model. These studies have been realized with the simulation in pp → npπ+ reaction at 1.25
GeV, and the results will be shown in the following.

5.12.1 π+ angular distribution in the center-of-mass system in C+C reactions

The distribution of π+ angle in the center-of-mass system (noted as θCM
π+ ) has been studied

by the HADES collaboration in C + C collisions at 1 and 2 A GeV [Agakichiev et al., 2009b].
In this symmetric collision system, the distribution can be fitted with the following expression :

dN

d cos θCM
π+

= A1(1 + A2 cos2 θCM
π+ ), (5.3)

where the fit parameter A2 characterizes the anisotropy of the angular distribution, and A1 is
the normalization factor.

Fig. 5.27 – Dependence of the anisotropy parameter (A2 in the figure) on the momentum in
the center-of-mass system for π+ produced in C +C collisions at 1A GeV (Right) and 2A GeV
(Left). Black dots with error bars are the results of the fits to the data, while squares exhibit the
result from the fits to UrQMD simulations. Statistical errors on the UrQMD points are smaller
than the symbol size. [Agakichiev et al., 2009b]
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Fig. 5.27 shows the anisotropy parameter A2 as a function of the pion momentum in the
center-of-mass system extracted from the analysis of π+ production in C + C collisions at 1
and 2 A GeV with HADES. In these inclusive measurements, π angular distribution could be
measured in center-of-mass for | cos θCM

π | < 0.8 at 1 A GeV and | cos θCM
π | < 0.7 at 2 A GeV.

It was found that the anisotropy of π+ production depends significantly on the π+ center-of-
mass momentum. It is close to 0 at low momenta, but increases with momentum. This effect
is qualitatively well reproduced by the UrQMD transport model (red squares) [Schmidt et al.,
2009]. As we know, the main process for π production in the 1-2 A GeV range is the decay of
the ∆ resonance. The anisotropy at low momenta is therefore interpreted as a remnant of the
characteristic forward and backward peaking of the ∆ production in inelastic NN scattering
which is indeed observed in our data in p + p reaction (see fig. 5.21).

It would be interesting to perform the same study, i.e. analyse the π+ angular distribution
in the center-of-mass system in the pp → npπ+ data, since they can in principle provide a
reference for the heavy-ion reactions. To take into account the unexpected π+ angle dependent
inefficiency observed in the npπ+ data (see section 4.5) and the quite complicated angular versus
momentum correlation, very accurate and careful error estimates are indispensable, which was
unfortunately not possible within the time limit of this PhD work. Nevertheless, we have used
the pp → npπ+ simulation to check the interpretation from heavy-ion experiments, taking into
account the anisotropy of the ∆ resonance decay.

5.12.2 Investigations in simulations of pp → npπ+ reactions at 1.25 GeV

The study is performed with the Pluto simulation in the pp → npπ+ channel for different
bins in center-of-mass momentum of π+. In each bin, the distribution of the cosine of the π+

angle in the p + p center-of-mass system (cos θCM
π+ ) is plotted in full solid angle (see fig. 5.28).

To study the sensitivity to the ∆ resonance production angular distribution, we first use an
isotropic ∆ decay angular distribution (green curve). The π+ angular distribution in the center-
of-mass is clearly forward/backward peaked for the highest pion momenta (panel (d)). So, in
this case, it is clear that the very strong anisotropy of the ∆ production results in an anisotropic
π+ angular distribution in the center-of-mass system. However, at low momenta, this is not
the case and the π+ angular distribution presents a more complex but in overall flatter shape.
This can be explained quantitatively by the fact that the higher π+ momenta in center-of-mass
are obtained when the π+ is emitted in a direction close to the ∆, while the direction is more
smeared for lower π+ momenta.

In the meantime, we have tested the sensitivity of θCM
π+ to the cut-off parameter Λπ, since

the missing neutron angular distribution is found to be better fitted using the Λπ= 0.75 GeV as
seen in section 5.6. However, the π+ angular distribution is not sensitive to such a small change
of the ∆ production angular distribution.

The sensitivity to the ∆ decay angular distribution has been investigated as well by using
three different anisotropies (as discussed in section 5.8) as shown in fig. 5.28. One can see that
increasing the π+ anisotropy shifts the yields towards forward and backward angles, so that the
angular distribution has a flatter bottom for the extreme 1 + 3 cos2 θ like angular distribution
than for the isotropic one.

This shows clearly the dependence of the center-of-mass pion angular distribution on the ∆
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Fig. 5.28 – Simulated π+ angular distribution in the p + p center-of-mass frame in pp → npπ+

reactions in 4π for different bins in π+ center-of-mass momentum. Blue : pure OPEM (A = 3),
green : isotropic decay (A = 0) and red : Wicklund’s parametrization (A = 0.66).

decay angular distribution. In practice, as shown in section 5.8, the extreme case 1 + 3 cos2 θ
is excluded by the data. But with anisotropies like found in [Wicklund et al., 1987] and also in
agreement with our data, the shape of the π angular distribution in the center-of-mass is still
significantly different in 4π with respect to the isotropic one.

Since these angular distributions clearly do not follow a 1 + A2 cos2 θCM
π+ trend, we did not

try to extract the A2 parameter. But it seems clear that the anisotropy is increasing very much
as a function of pCM

π+ . It leads to the conclusion that the smaller anisotropies observed at low
pCM

π+ in the case of heavy-ion collisions can not be taken as a proof of the thermalization of the
system, since qualitatively the same trend is observed in p + p collisions.
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5.13 Conclusion for the exclusive pp → npπ+ analysis at 1.25
GeV/c

In this section, we have discussed in detail the exclusive analysis of pp → npπ+ reactions
measured by HADES at 1.25 GeV/c. The mass distributions as well as angular distributions
are compared to a Pluto simulation which is a ”HADES homemade” model based on the Teis
resonance model where the different processes are added incoherently. The aim of studying this
channel is to check the validity of the resonance model used to interpret di-electron production
in p + p reactions and in heavy-ion reactions.

An overall good agreement with the standard Pluto simulation is observed in our analysis.

The dominance of π production via ∆ resonance production is clearly seen in this channel.
Nπ+ invariant mass and neutron angular distribution are in fairly good agreement with the
one-π exchange model for ∆ production. The neutron-proton final state interaction has been
observed in this channel and has been nicely described by the simulation with the Jost function.
However, a discrepancy at cos θCM

n close to 0 has been seen from the comparison of data to
Pluto simulations even with the FSI effect included. A cut-off parameter Λπ = 0.75 GeV has
been adjusted to better describe the data. The influence from the N∗(1440) resonance as well as
a non-resonant contribution has been tested, but the sensitivity to these contributions is small
due to the strong dominance of ∆++ production. The π angular distribution has been studied
as well since it is expected to be sensitive to the ∆ decay processes. From the comparison to
different decay anisotropy coefficients, our data confirm the 1 + 0.66 cos2 θ which was measured
by previous experiments, but the isotropic decay shows also a fairly good agreement to our data.
We therefore propose some improvements to better describe the data, including FSI implemen-
tation, cut-off parameter Λπ = 0.75 GeV and ∆ decay anisotropy A = 0.66.

The acceptance correction has been achieved for the neutron angular distribution and (p, π+)
invariant mass distribution. The acceptance corrected spectra are fully consistent with the ones
measured in the HADES acceptance. The total cross section of pp → npπ+ has been extracted
from the acceptance corrected spectra. It results in 18.17 ± 1.85 mb. This value was compared
to existing data and good agreement was found.

These exclusive data should be compared to more sophisticated models. Despite the unex-
pected inefficiency problems and a not well suited trigger, they have indeed a high statistics
and could allow precise tests of models. Such a model could be for example including one of the
OBE models which was already compared to the di-electron measurements. It would be a good
test of the consistency of these models.

These checks of resonance model are useful for di-electron analysis, since this model is used
for analysis and acceptance corrections. Following the resonance model, the pp → npπ+ and
pp → ppπ0 channels are coupled by isospin relations. However, it is necessary to make the same
kind of detailed tests for the pp → ppπ0 channel which is more directly linked to the π0 and ∆+

Dalitz decay channels which dominate in the inclusive e+e− production at 1.25 GeV.

Inclusive di-electron production via π0 and ∆ Dalitz decay is not very sensitive to the details
of π0 and ∆ production. Here, the main ingredient is the π0 and ∆ production cross section,
although the ∆ mass distribution has also an influence on the yield at high e+e− invariant
masses. From our analysis, it is shown that the ∆ mass distribution is well reproduced in the
high mass region (acceptance corrected spectrum). The cross section measured in pp → npπ+
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channel is 10% lower than the resonance model cross section used for the di-electron analysis.
This difference has however a small influence considering the uncertainties related to normaliza-
tion and efficiency correction used in the di-electron analysis (of the order of 22%).

For the exclusive pe+e− analysis, the sensitivity to the ∆ resonance production is higher
due to the detection of the proton. If the analysis of the pp → ppπ0 channel confirms that the
proposed improvements in the simulation better describe the data, it should be used for the
analysis of the exclusive pp → ppe+e− channel. We will discuss this point a little bit further in
the next chapter.
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Chapitre 6

Contribution to the study of ∆

Dalitz decay process

The exclusive measurement of the ∆ Dalitz decay using pp → ppe+e− events has been re-
alized in parallel with the inclusive measurements using pp → Xe+e− events. As mentioned in
section 1.6, in the p + p reaction at 1.25 GeV the main di-electron production processes are the
π0 and ∆ Dalitz decays, pp bremsstrahlung is expected to be small. E. Morinière had studied
the feasibility of these exclusive measurements in her PhD [Morinière, 2008]. The data analysis
is now performed by W. Przygoda [Przygoda, 2009] in Krakow. The exclusive measurement has
a great interest since it allows to reconstruct the ∆ signal and to identify unambiguously its
Dalitz decay process which has never been measured experimentally so far.

In this chapter, I will introduce at first briefly the strategy of this measurement and the
model used in the simulation for the data interpretation. Then I will focus on the simulation of
helicity distributions in the ∆ Dalitz decay in which I took an active part in collaboration with
W. Przygoda.

6.1 Simulation for the ∆ Dalitz decay in p + p reactions

The simulation for the ∆ Dalitz decay process illustrated by fig. 6.1 is performed with the
Pluto event generator. A short summary of the inputs is given below.

Fig. 6.1 – Diagram of ∆ Dalitz decay process in p + p reaction.

– ∆ production :
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The production of the ∆ resonance is described in the same way as in the hadronic channel
simulation. As explained in detail in section 3.2.3, the mass and angular distribution of
the pp → N∆ process is calculated within the OPEM [Dmitriev and Sushkov, 1986].

– ∆ Dalitz decay branching ratio :
The di-electron mass-dependent differential decay width of the ∆ Dalitz decay derives from
QED calculations. By choosing the electric, coulomb and magnetic covariant, one can ob-
tain the Dalitz decay width as a function of the corresponding form factors. We used
the expression from [Krivoruchenko and Faessler, 2002], which was checked by J. Van de
Wiele. It has to be mentioned that inconsistent expressions can be found in the litterature
for this differential Dalitz decay width, as was already pointed out in [Krivoruchenko et al.,
2002].

– Iachello N − ∆ transition from factor :
The two-component quark model form factor from Iachello which is in fact a VDM model
has been implemented in the Pluto simulation [Wan and Iachello, 2005]. With respect to
the constant form factor, the VDM form factor has an influence in the higher mass region,
i.e. for Minve

+e− > 0.3 GeV/c2.

– γ∗ angular distribution :
Similarly to the pionic decay angular distribution (see section 3.2.4), the γ∗ angular distri-
bution in the ∆ → Nγ∗ decay is sensitive to the polarization of the ∆ resonance and hence
to the ∆ production mechanism. In Pluto, we implement this distribution as 5 − 3 cos2 θ,
in the ∆ reference frame with the z-axis taken as the momentum transfer direction in the
reference frame of the excited nucleon, assuming the pure one-π exchange case. Techni-
cally, the same recipe based on the direct and exchange graph amplitudes, as for the pionic
decay (see section 3.2.4), was used to define the momentum transfer direction.

– helicity distribution :
The di-electron angular distribution is described through the helicity angle distribution as
will be shown in section 6.3.

The simulated events are filtered by the acceptance matrices, and proceeded through the
whole analysis chain to compare with the data.

6.2 ∆ Dalitz decay reconstruction

One of the important problems in the exclusive pp → ppe+e− channel is the background
subtraction. First, a series of cuts are applied to remove as much as possible the conversion pair
which are produced in the interaction of real photons with detector material. Second, as in any
e+e− channel, the combinatorial background has to be subtracted carefully. This is achieved in
our analysis using the like-sign method considering that the combinatorial pairs have the same
yield as the like-sign e+e+ and e−e− pairs. Then comes the problem of pp → ppe+e− signal
selection. The π0 Dalitz decay (π0 → γe+e−) has a cross section about a factor 200 higher than
the ∆ Dalitz decay in the low mass region. A method was proposed, consisting of adjusting the
width of the cut on pe+e− missing mass distribution as a function of the proton momentum,
in order to optimize the signal-to-background ratio because the resolution on mass depends
strongly on the proton momentum [Morinière, 2008]. However, due to the worse than expected
resolution, and more precisely to the tails of the non-Gaussian distribution of the momentum
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resolution, this method has not been used.

As a consequence, the ∆ Dalitz decay signal is extracted from the (e+, e−) invariant mass
above 0.14 GeV/c where the π0 Dalitz decay does not contribute.

In the following, we will summarize the results of the exclusive pp → ppe+e− analysis using
pe+e− events, currently performed by Witold Przygoda. The data are compared to a Pluto sim-
ulation including π0 and ∆ Dalitz decays.

Fig. 6.2 – Left : pe+e− missing mass distribution in the region of Minv(e
+, e−) > 0.14 GeV/c2.

The data are drawn in black dots and the Pluto simulation is drawn in blue solid curve. Right :
(e+, e−) invariant mass distribution with a 3σ cut around the proton mass (red bars) imposed
on pe+e− missing mass. The Pluto simulation for the ∆ Dalitz decay channel and for the π0

Dalitz decay channel are drawn respectively in red and in blue. Both spectra are measured in
the pp → pe+e−X reaction at 1.25 GeV in HADES acceptance.

The pe+e− missing mass distribution is obtained in the left panel of fig. 6.2. It peaks at
the proton mass as expected, showing that the pp → ppe+e− reaction has been measured. The
position and width of the proton peak is well reproduced by the simulation which confirms the
efficiency of the background subtraction strategy and the good description of the resolution in
the simulation. The contribution at missing masses higher than 1.08 GeV/c2 which would cor-
respond to the production of an additional pion is small. As a last step, a 3σ cut is imposed
on the pe+e− missing mass to remove the bad resolution events. Totally, about 200 counts are
selected corresponding to the pp → ppe+e− reaction.

In the right panel of fig. 6.2, the exclusive (e+, e−) invariant mass distribution is shown for
all pe+e− events inside the 3σ cut on pe+e− missing mass. Unlike the other distributions, this
spectrum is obtained without Minv(e

+, e−) > 0.14 GeV/c2 cut in order to have a global view in
both π0 and ∆ Dalitz decay regions. Within error bars, the measured di-electron yield is satis-
factorily reproduced by the simple simulation. As mentioned before, the sensitivity to the N −∆
transition form factor is expected in the higher e+e− invariant mass region above 0.3 GeV/c2.
However, due to the lower statistic, the sensitivity in the exclusive measurement is smaller than
in the inclusive one (left panel of fig. 1.11).

In order to further prove the measurement of ∆ Dalitz decays, the ∆ mass distribution
and its center-of-mass angular distribution are checked by comparison with Pluto simulation.
Here, the ”standard” Pluto simulation is used. The ∆ is reconstructed from the pe+e− triplets
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considering at the same time the detected proton and the reconstructed missing proton. The
measured invariant mass of pe+e− is well reproduced by simulation, whereas only a small shift
of 20 MeV/c2 to the higher mass can be seen (left panel of fig. 6.3). The acceptance corrected ∆
center-of-mass angular distribution is also nicely described by the simulation (right panel of fig.
6.3). This confirms that the ∆ Dalitz decay is the dominant process and that pp bremsstrahlung
is negligible.

Fig. 6.3 – Left : pe+e− invariant mass (or called reconstructed ”∆” mass) distribution and
Right : acceptance and efficiency corrected pe+e− angular distribution in the center-of-mass
system , compared to a Pluto simulation for the ∆ Dalitz decay process (blue lines).

The mass and angular distributions obtained here for pp → p∆+ process can be compared
to the ones measured with the hadronic channels pp → n∆++ (see section 5.2 and 5.6).

In the case of the pe+e− analysis, the cut of Minve
+e− > 0.14 GeV/c2 favors higher ∆

masses, which explains why the M∆ distribution is shifted to higher values with respect to the
Minv(p, π0) distribution measured from pp → ppπ0 events (see fig. 5.25). We would like also to
note that the observation of the simulations are shifted towards high masses with respect to the
data, as seen in both the Minv(pe+e−) distribution (left panel of fig. 6.3) and the Minv(p, π+)
distribution (fig. 5.25).

For the cos θ∆ distribution, a connection can be made with the neutron center-of-mass distri-
bution in the pp → npπ+ reaction which reflects the ∆++ production angular distribution (see
section 5.6). The cos θ∆ is in good agreement with the simulation within error bars in the case
of the pe+e− channel and no clear evidence can be seen here for a flatter angular distribution as
was observed in the npπ+ channel and was simulated using a larger cut-off parameter Λπ = 0.75
GeV in the OPEM.

In addition, the measured yields are in good agreement with the cross section adopted from
the resonance model for the ∆ production σpp→p∆+ = 4.0 mb. Considering the statistical and
systematical errors on the measured yield, which are 9% and less than 20%, respectively, and
neglecting the pp bremsstrahlung, the branching ratio is in agreement with the value 4.2 · 10−5

as predicted by QED calculations.
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6.3 Helicity distributions

6.3.1 Motivation

Fig. 6.4 – Left : Sketch of the helicity angle α in the ∆ Dalitz decay process. Right : Anisotropy
coefficient (B) for different elementary di-electron sources as a function of di-electrion mass (M)
[Bratkovskaya et al., 1995].

In the exclusive analysis of pe+e− events, the helicity distribution has been carefully studied
as another useful quantity to characterize the ∆ Dalitz decay process.

The helicity h is defined as the projection of the spin ~S onto the direction of momentum p̂ :
h = ~S · p̂. h can take values ±1 or 0 for a virtual photon due to its spin 1. The shape of the
distribution of the e+/e− angle (α in fig. 6.4 (left panel)) in the γ∗ frame in the decay process
γ∗ → e+e− depends on the population of the different helicities of the γ∗ (h = ±1, 0). Starting
from the reference frame of the decaying particle (the ∆), the helicity angle is defined as the
e+/e− angle in the γ∗ rest frame with respect to the direction of γ∗ momentum.

In the case of the π0 Dalitz decay, or η Dalitz decay, the helicity distribution is well known
and should be in the form of 1 + cos2 αe due to the fact that these mesons have spin 0. In fact
this has been confirmed by HADES in the exclusive analysis (pp → ppe+e−γ) of p + p reactions
at 2.2 GeV [Wísniowski, 2009]. In the vector meson decays, this distribution is expected to be
isotropic. In the NN bremsstrahlung process, the anisotropy of this distribution is close to 0 or
even negative [Bratkovskaya et al., 1995] (right panel of fig. 6.4).

From the QED calculation of the N −∆ electromagnetic transition, using a purely magnetic
transition [Martemyanov, 2009, Bratkovskaya et al., 1995, Van de Wiele and Ramstein, 2009],
the q2 and αe dependent differential decay width can be calculated. It factorizes as :

d2Γ

dq2 d cos αe
=

dΓ

dq2
(1 + cos2 αe) (6.1)

where Γ is the Dalitz decay width of the ∆ mass and q is the four-momentum transfer. This
result can be explained as follows : for magnetic or electric transitions, transverse photons (with
helicities ±1) are selected [Martemyanov, 2009]. In addition, due to the small mass of e+/e−,
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124 CHAPITRE 6. CONTRIBUTION TO THE STUDY OF ∆ DALITZ DECAY PROCESS

they are produced with opposite helicities. The distribution given by equation 6.1 is used in the
Pluto generator for the ∆ Dalitz decay description.

The strategy related to the helicity distribution is to reconstruct experimentally the αe dis-
tribution with pe+e− events. If the ∆ Dalitz decay is the dominant process, a 1+cos2 αe helicity
angle distribution is expected.

6.3.2 Definitions of helicity

HADES helicity definition

In the HADES data analysis, technically, the helicity angle for the ∆ → pγ∗ → pe+e− decay
is calculated from the four-momentum in the laboratory system with following steps :

– Take (p, e+, e−) four-momenta in laboratory system
– Boost (p, e+, e−) four-momenta to ∆+ rest frame
– Boost e+, e− to γ∗ rest frame
– Calculate the angle between e+/e− and γ∗

The one-boost / two-boost problem

The procedure described above implies two boosts for the leptons, i.e. the first boost from
lab frame to the ∆+ rest frame and the second boost from the ∆+ rest frame to the γ∗ rest
frame. This is important and needs to be specified in the definition of the helicity angle. We
will make this point more explicit since it was at the origin of some confusion in the analysis
discussions.

Taking the definition of helicity angle mentioned above, and starting from four-momenta in
lab, we could think of boosting directly e+/e− from lab to the γ∗ frame. In this case, a flatter
distribution is however obtained. This is in fact due to a relativistic effect. The sequence of two
boosts is indeed not equivalent to the direct boost from the first reference frame to the final one,
it produces an additional rotation. If one wants to recover the direct boost, the inverse rotation
which can be calculated from the two individual boost vectors has to be applied. These effects
are known under Thomas precession and Wigner rotations [Van de Wiele, 2002]. They appear
only for very fast moving reference frames. In our case, due to the high velocity of the γ∗, the
effect is sizable.

So, with the HADES helicity definition, it is needed to have the e+/e− and γ∗ firstly in the
∆+ reference frame before boosting e+/e− to the γ∗ reference frame. This can be understood
since the 1 + cos2 α distribution is obtained for a QED calculation in the ∆+ reference frame.

BABAR helicity definition

We found in the litterature other ways to define this quantity. For example, in the analysis
tools of the BABAR collaboration [BABAR Collaboration, 2007], the helicity angle is calculated
as follows :

– Take (p, e+, e−) four-momenta in the laboratory system
– Boost ∆+ and e+/e− four-momenta to the γ∗ rest frame
– Calculate the angle between e+/e− and ∆+
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Equivalence of ”BABAR helicity” to ”HADES helicity”

Is the ”BABAR helicity” definition equivalent to the ’HADES helicity” definition ? They
differ apparently by the fact that in HADES case, the angle of e+/e− in the γ∗ rest frame
is measured with respect to the γ∗ momentum in the ∆+ rest frame ; while in the BABAR
case, the reference axis is the direction of ∆+ momentum in γ∗ rest frame. However, both di-
rections are opposite since the (∆+ momentum in γ∗ rest frame) is obtained by boosting the
null vector along the direction of (γ∗ momentum in ∆+ rest frame). So the two definitions are
in fact equal modulus π. In the BABAR definition, the vectors are both in the same refer-
ence frame, the γ∗ rest frame. So the effects of rotations cancel and this definition is therefore
independent of possible intermediate boosts. This means that the first step described above :
”Take all four-momenta in lab” is not necessary and that one can start from any reference frame.

A third alternative is to take an expression which is Lorentz-invariant [BABAR Collaboration,
2007], where no boost at all is needed and which is also equivalent to the other mentioned above.
All these definitions are equivalent, the HADES one which is also found in the transport model
calculations, requires however to boost the four-momenta first to the ∆+ reference frame.

In the Pluto event generator, the helicity distribution is implemented as 1+ cos2α according
to the QED calculation (see fig.6.5).
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Fig. 6.5 – Helicity angle distribution (green triangles) in 4π fitted with A(1 + B cos2 α) (black
dashed line) in our Pluto simulation.

6.3.3 HADES helicity distribution

In the exclusive pe+e− data analysis, the helicity angle is calculated following the ”HADES
helicity” definition. The ∆+ is reconstructed taking both detected and reconstructed protons into
account as mentioned in section 6.2. Then the distribution is corrected for detector efficiency and
acceptance and is extrapolated to the whole invariant mass range using the simulation. The pre-
liminary result (fig.6.6) is found to be in good agreement with the 1+cos2α expected from QED.
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Fig. 6.6 – Helicity angle distribution measured by HADES after acceptance and efficiency cor-
rection. Data are shown as black dots and fitted by a function of type A(1 + B cos2 α) with
B = 1.11 ± 0.32.

For now, only statistic errors are presented in this distribution (fig 6.6). However, the distri-
bution shown above is obtained after a whole analysis chain. The systematic errors related to
the correction procedure should be considered.

Fig 6.7 shows the correction factors for each cut as a function of cosα in the left column,
together with the helicity angle distribution after corresponding cuts on the right side. The idea
is to illustrate the effect of each cut, and the corresponding influence to the correction. Note
that in the simulation, the helicity distribution is implemented following 1 + cos2 α.

In the first row, we show the effects of the (e+, e−) opening angle cut and the (e+, e−)
invariant mass cut. In fact, the former cut is included in the latter one, because most of the
events corresponding to a (e+, e−) opening angle smaller than 9o are found in the π0 region
(Minve

+e− < 0.14 GeV/c2). These two cuts remove in total 92.5% of the events and result in a
globally down scaled distribution. But its shape is not yet very much distorted. After filtering
through the detector efficiency and acceptance matrices (second row), 96% of the residual events
are cut. The forward and backward angles are strongly cut so that the shape of the distribution
is now completely changed.

The Minv(e
+e−) distribution is quite precisely known and the related variation of the correc-

tion factor is quite smooth. We can conclude that the uncertainties from the opening angle cut
and invariant mass cut are very small and can be ignored. The main source of systematic error
is no doubt from the detector acceptance and efficiency correction, because the correction factor
varies rapidly with cosα and it deforms strongly the distribution. From the left-bottom panel
of fig. 6.7, we can see that the correction factor for small angles is huge and vary steeply. So
for these bins, the careful treatment of corrections and good evaluation of errors are extremely
important. The systematic error should be estimated and included in the helicity angle distri-
bution for the further anisotropy parameter fitting.

Influence from the scattered proton

The helicity angle distribution obtained by HADES results in 1 + cos2α (see fig.6.6), which
fulfills the QED prediction. This effect is interpreted as an additional proof of the dominance of
the ∆ Dalitz decay process. However, different effects might distort the initial 1+ cos2α angular
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Fig. 6.7 – Left : Distribution of correction factors of different imposed cuts and conditions.
Right : Helicity angle distributions (”true ∆” + ”fake ∆”) with corresponding conditions. The
simulated spectrum (triangles) is compared with the 1 + cos2 θ function after normalization to
the same total yield.

distribution. Investigations related to this question have been performed and will be shown in
the following.

As the ∆+ resonance can not be unambiguously reconstructed, one can naturally expect a
different distribution for the ∆+ reconstructed with the scattered proton (so called ”fake” ∆)
(see fig. 6.1).

This effect has been studied using our simulation where the two protons can of course be
identified. However, taking into account both protons, the helicity distribution is only slightly
distorted as shown in fig 6.8. For the ”fake” ∆, the anisotropy parameter is 0.94 instead of 1 (see
fig. 6.8). This distortion becomes larger when we compare these distributions as a function of
(e+, e−) invariant mass, as in fig. 6.9. The ”true” ∆ (reconstructed with proton from ∆+ Dalitz
decay) contributions keeps the anisotropy parameter (B = 1) while the ”fake” ∆ contribution
gives anisotropy parameters B which are smaller than 1 and decrease with increasing e+e− in-
variant mass.

127



128 CHAPITRE 6. CONTRIBUTION TO THE STUDY OF ∆ DALITZ DECAY PROCESS

αcos
1 0.5 0 0.5 1

C
ou

nt
s

0

50

100

310×

)α2fit:   A ( 1 + B cos

 0.003±B = 0.974 

 0.004±B = 1.004 
 0.004±B = 0.944 

Fig. 6.8 – Simulated helicity angle distribution (blue triangles) in 4π fitted with A(1+B cos2 α)
(dashed line). The ”true ∆” contribution is shown in green and the ”fake” ∆ contribution is
shown in red.
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Fig. 6.9 – Simulated helicity angle distribution (blue triangles) in 4π fitted with A(1+B cos2 α)
(dashed line) in different mass slices. The ”true ∆” contribution is shown in green and the ”fake”
∆ contribution is shown in red.

As explained in section 6.2, the analysis of the ∆ Dalitz decay is performed for Minv(e
+, e−) >

0.14 GeV/c2. In this condition, the anisotropy parameter is expected to be B = 0.77 (see fig.
6.10) and not 1.

As a conclusion, due to the ambiguity in the ∆ reconstruction, the helicity distribution is
distorted, mainly in the high e+e− mass region and the anisotropy parameter for helicity distri-
bution averaged over the γ∗ mass distribution is expected to be only slightly smaller than 1.
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(black dashed line) for e+e− invariant mass greater than 0.14 GeV/c2.
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6.3.4 Pseudo-helicity distributions

The helicity distribution has been investigated also in our inclusive e+e− analysis, especially
in the case of heavy-ion reactions for which exclusive measurements cannot be performed. In
this context, the helicity as defined in 6.3.2 (called ”true helicity” in this section) cannot be
reconstructed.

Definition of pseudo-helicity distributions

But a pseudo-helicity angle can be calculated, in two different ways as explained in Annex
B. The difference with respect to the ”true helicity” angle comes from the reference frame for
the γ∗ direction which is taken in the laboratory system (lab. pseudo-helicity) or center-of-mass
(CM pseudo-helicity) frame instead of the reconstructed ∆ reference frame.

Results from the Ar + KCl reactions

The CM pseudo-helicity angle distribution has been used in the Ar + KCl analysis and the
preliminary result is shown in fig. 6.11. The black points present in fact the ratio

N exp

N sim
, (6.2)

where the N exp is the measured counts in a CM pseudo-helicity bin ; N sim is the simulated
Pluto cocktail in which an isotropic helicity angle distribution is assumed, and is filtered through
acceptance/efficiency matrices and smeared for momentum resolution. The pink curves show the
results from a fit of this ratio according to the function

A(1 + B cos2 θ) (6.3)

where A is the normalization factor and B is the anisotropy coefficient which we are interested in.

In the region of 0.13 < Minve
+e− < 0.5 MeV/c2, the N exp in each bin is obtained by

subtracting the known η contribution using the simulation (blue curve). The idea is to look
whether the helicity distribution helps to identify the source of di-electrons which are in excess
with respect to the already well known η.

The CM pseudo-helicity has been studied as a function of e+e− invariant mass. The anisotropy
is clearly non-zero for the first invariant mass slices and it is compatible with 0 in the last slice.
The latter result is consistent with the di-electron decay of vector mesons where an isotropic
angular distribution is expected, but statistics is very low. While in the low mass region, a clear
anisotropy is observed. When Minv(e

+e−) < 0.14 GeV/c2, the anisotropy is expected because
the π0 Dalitz decay dominates. At larger invariant masses, after η substraction, it could be the
hint of the ∆ Dalitz decay process.

It is however important to study how the original distributions, which are 1 + cos2 θ in the
case of π0 and ∆ Dalitz decay, are distorted when the γ∗ momentum is taken in the center-of-
mass. We will also consider the expected results for the lab. pseudo-helicity.
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6.3. HELICITY DISTRIBUTIONS 131

Fig. 6.11 – Ratio of CM pseudo-helicity angular distribution measured in Ar + KCl at 1.76 A
GeV and the simulated Pluto cocktail in which isotropic helicity angle distribution is assumed,
in different e+e− invariant mass ranges. Data are presented by black dots and are fitted with
A(1 + B cos2 θ).

Simulation study with p + p reactions

In the context of the discussions related to the preliminary analysis of the Ar + KCl data
mentioned above, a simulation study was therefore performed for the p+p reaction at 1.25 GeV,
assuming the ∆ Dalitz decay process. The aim was to check the behavior of the pseudo-helicity
for the ∆ Dalitz decay and provide a reference for the heavy-ion results. The input to this sim-
ulation were the same as described in section 6.1.

Firstly, we compare all the helicity angle distributions using the three definitions and taking
into account only the true ∆. The anisotropy coefficients of the pseudo-helicity distributions are
slightly smaller than 1, but still very close to 1 (see fig. 6.12).
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Fig. 6.12 – Helicity angle distributions (only ”true ∆”) in 4π fitted with A(1+B cos2 α). Blue :
true helicity, orange : lab. pseudo-helicity and pink : CM pseudo-helicity.

Secondly, we compare them in slices of e+e− invariant mass and taking into account the
”fake ∆” as well. The latter condition will not affect pseudo helicities because the protons are
not involved in the definition. From fig.6.13, we see that the pseudo-helicities follow the trend
to be more isotropic for higher e+e− invariant mass than the real ones. The lab. pseudo-helicity
distribution shows the strongest dependence on mass. The CM pseudo-helicity distribution keeps
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132 CHAPITRE 6. CONTRIBUTION TO THE STUDY OF ∆ DALITZ DECAY PROCESS

always very close to the real one.

Thus the CM pseudo-helicity is recommended for inclusive analysis since the distribution is
less sensitive to e+e− invariant mass.

Despite the distortion at large invariant masses, the anisotropy is still significant. It can
therefore allow to identify the ∆ Dalitz decay contribution more easily from other isotropically
distributed sources than lab. pseudo one. This justifies a posteriori the fact that the analysis of
heavy-ion data was based on the CM pseudo-helicity. It confirms that the CM pseudo-helicity
is a useful quantity to investigate the di-electron sources which produces an excess with respect
to the η contribution.
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Fig. 6.13 – Helicity angle distributions (”true ∆” + ”fake ∆”) in 4π fitted with A(1+B cos2 α)
in different e+e− invariant mass regions. Blue : true helicity, orange : lab. pseudo-helicity and
pink : CM pseudo-helicity.
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Fig. 6.14 – CM pseudo-helicity angle distributions (”true ∆” + ”fake ∆”) in 4π fitted with
A(1 + B cos2 α) for 0.13 < Minve

+e− < 0.5 MeV/c2.

The original distribution of helicity angles in the ∆ Dalitz decay, which is expected to be
1+cos2 θ, is smeared by the use of the CM-pseudo helicity. It results in a distribution 1+B cos2 θ,
with B decreasing as a function of e+e− invariant mass. The coefficient B = 0.51 found in the
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analysis of helicities for heavy-ion has to be compared to the coefficient B = 0.88±0.01 (instead
of 1) found in the simulations of the p + p reaction under the same analysis conditions (see fig.
6.14), i.e. in the e+e− invariant mass range 0.13 < Minve

+e− < 0.5 MeV/c2.

Further smearing due to the Fermi momentum or to the multi-step collisions are likely to
distort the distribution, a more realistic study could be done using e.g. transport models or
thermal sources.
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Chapitre 7

Conclusion and outlook

Exclusive measurements in proton-proton reactions at a kinetic energy of 1.25 GeV were
presented in this thesis. This work is realized in the framework of the HADES experiment. The
main goal was to investigate the di-electron production related to the ∆ (1232) Dalitz decay.
The analysis of these data requires a control of the cross sections and mechanisms of the ∆
resonance production.

This was the motivation for the full analysis of the pp → npπ+ reaction at 1.25 GeV and the
comparison to other one-pion production channels measured at 1.25 and 2.2 GeV, which is the
main contribution of this PhD work.

One of the difficulties of the pp → npπ+ analysis comes from the unexpected inefficiency
problem as a function of the π+ angle and a not fully suited trigger. In order to minimize the
related effects and take properly the possible uncertainties into account, a specific analysis strat-
egy including trigger correction and accurate error estimation and propagation were developed.

The results obtained for the pp → npπ+ channel show an overall good agreement between the
HADES data and the standard Pluto simulation, where the resonance model with ∆ excitation
in the one-π exchange assumption is implemented.

– The dominance of one-pion production via ∆ resonance at 1.25 GeV has been clearly seen.
Other contributions, such as N∗(1440) and non-resonant pion production can also play
a role, but the sensitivity of the HADES data to these contributions is small due to the
strong dominance of the ∆.

– The neutron-proton final state interaction has been observed and has been satisfactorily
reproduced by implementing the Jost function.

– The Nπ invariant masses and neutron angular distributions show a fairly good agree-
ment with the one-pion exchange model of Dmitriev et al. [Dmitriev and Sushkov, 1986].
However, a less forward/backward peaked ∆ production angular distribution has been
observed. By increasing the value of the cut-off parameter Λπ=0.75 GeV, the measured
data got nicely reproduced.

– Consistently with previous data, the HADES data favor a anisotropic ∆ resonance decay.
This has been concluded by considering of the measured yields and by studying the π+

angular distribution in the (p, π+) reference frame.

From the observations listed above, modifications of the Pluto simulation are proposed to
better describe the data. The latter can be useful to have a precise estimation of the systematic
errors for the pp → ppe+e− channel. We would however like to mention that these changes
should be validated simultaneously by the pp → ppπ0 channel.
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With the large statistics achieved, the mass and neutron angular distributions were extrap-
olated to full phase space using a 2-dimensional acceptance correction with a minimized model
dependence. From the acceptance corrected spectra, a rather precise total cross section for the
pp → npπ+ channel has been extracted σ = 18.17 ± 1.85 mb. This value has been compared to
the available data and is found to be in full agreement.

The π angular distribution in the center-of-mass system has been studied as well. This study
was triggered by the HADES results obtained with the C+C experiments, and by the interpreta-
tion that the charged π angular distribution in the center-of-mass could reflect the thermalization
of the system. Due to the π-angle dependent inefficiency observed in the pp → npπ+ channel, a
study of the center-of-mass π angular distribution would have needed a thorough investigation
of systematic errors which was unfortunately not possible within the present time limit. How-
ever, these distributions were investigated in the pp → npπ+ simulation. The results from this
simulation show the same tends as observed in C + C data, which leads to the conclusion that
the smaller anisotropies observed at low pCM

π+ in the case of heavy-ion collisions can not be taken
as a proof of the thermalization of the system.

The analysis work presented in this PhD was performed in the framework of a very simple
resonance model, i.e. the Teis model [Teis et al., 1997], which is similar to the ones used in
transport models. These exclusive data should be compared in the future to more sophisticated
models, including all resonant and non-resonant graphs in a coherent way. Such a comparison
should be made, for example, with the full OBE calculation [Shyam and Mosel, 2009], which
were already used for the inclusive di-electron production. This would be an important consis-
tency check of these models.

Another contribution that I also presented in this PhD is a simulation work on helicity angle
distributions, which was proposed as a support to the data analysis of the ∆ Dalitz decay exclu-
sive measurements using pe+e− events. A distortion of the helicity angle distribution has been
observed due to the ambiguously reconstructed ∆ resonance, especially for the high di-electron
masses. But it confirms that an anisotropy of the angular distribution close to 1 is expected
in the case of exclusive ∆ Dalitz decay analysis. This distribution can therefore be used as an
additional proof of the dominance of the ∆ Dalitz decay process. So, the conclusion that the
∆ Dalitz decay was measured for the first time with a branching ratio in agreement with the
QED calculation (4.2 · 10−5) seems to be confirmed. However, calculations of the distributions
of pe+e− events and especially of the helicity distribution in pp bremsstrahlung process would
be highly needed.

On the other hand, a dedicated simulation work has been done to give a reference to the
preliminary results of helicity angle distribution carried out with inclusive e+e− event from the
ArKCl experiments. It confirms that the CM pseudo-helicity is a useful quantity to investigate
the di-electron sources and distinguish sources in 1 + cos2 θ, like Dalitz decay of ∆ resonances
from other sources, like pn bremsstrahlung, which are supposed to have lower or even negative
anisotropies [Bratkovskaya et al., 1995].

During 2009-2010, HADES suspended the data production and has performed an upgrade
of the detector. The new RPC detector was installed in the place of TOFINO detector since
the former one provides a larger granularity. Also a new trigger and readout board (TRB)
system has been implemented and tested. With this new system, it is possible to connect all
types of detector readout boards and improves the overall data taking efficiency. In addition,
the option that the current HADES PreShower detector could be replaced by an electromag-
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netic calorimeter used in the former OPAL1 experiment at LEP2 is currently under investigation.

Taking benefit of the recent detector upgrade, HADES will now continue its program towards
heavier systems. The Ag +Ag run at 1.65 A GeV and Au+Au run at 1.25 A GeV are scheduled
in 2011, aiming at investigating the medium effect with the highest beam energies and largest
system sizes. In the meantime, the πA experiments are also foreseen in 2013, to study the ρ and
ω mesons spectral functions.

The work presented in this PhD demonstrated that the exclusive measurements performed
with the elementary reactions are a powerful tool to constrain the models used to describe the
elementary processes, as the ones used in transport models for heavy-ion studies. This is and
will be in the future taken as one of the important goals of the HADES experiment. With the
elementary reactions induced by pion beams, exclusive measurements will provide even more
strict checks of the models and will bring information on di-electron production by baryonic
resonances beyond the ∆.

1Omni-Purpose Apparatus at LEP
2Large ElectronPositron Collider
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Annexe A

The isospin coefficients

pp → ∆+p pp → ∆++n

pπ0∆+ : |Ciso| =

√

2

3
pπ+∆++ : |Ciso| = 1

pπ0p : |Ciso| = 1 pπ+n : |Ciso| =
√

2

Tab. A.1 – Isospin coefficients |Ciso| in the pp → N∆ process. |Ciso| is given for each vertex.

∆+ → pπ0 ∆+ → nπ+ ∆++ → pπ+

pπ0∆+ : |Ciso| =

√

2

3
nπ+∆+ : |Ciso| =

√

1

3
pπ+∆++ : |Ciso| = 1

Tab. A.2 – Isospin coefficients |Ciso| for the ∆ pionic decay vertex.
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Annexe B

Helicity distribution definitions

The definition of the real helicity and pseudo helicity are described as following :
(1) ”True” helicity : HADES helicity definition

- Proton, e+ and e− detected in lab frame, reconstruct γ∗ in lab = e+ + e− and ∆+

in lab = proton + e+ + e−

- γ∗ boosted to ∆+ rest frame
- e+/e− boosted to the ∆+ rest frame first, then to the γ∗ (in ∆+ rest frame) rest

frame.
- Calculate cos α, where α is the helicity angle between e and γ∗ as defined above

(2) Lab-pseudo helicity : Pseudo helicity with γ∗ in lab, e+/e− in γ∗ rest frame :
- e+ and e− detected in lab frame, reconstruct γ∗ in lab = e+ + e−.
- e+/e− boosted to the γ∗ rest frame.
- Calculate cos α, where α is the helicity angle between e and γ∗ as defined above

(3) Pseudo helicity with γ∗ in total center of mass frame (proton-proton CM), e+/e− in γ∗

rest frame :
- e+ and e− detected in lab frame, reconstruct γ∗ in lab = e+ + e−.
- γ∗ boosted to the pp CM rest frame.
- e+/e− boosted to pp CM, then to the γ∗ (in CM frame) rest frame.
- Calculate cos α, where α is the helicity angle between e and γ∗ as defined above
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Résumé

L’étude précise de la décroissance pionique et la première mesure de décroissance Dalitz de
la résonance ∆(1232) sont obtenues par la collaboration HADES (High Acceptance Di-Electron
Spectrometer) à GSI, Darmstadt. HADES a développé dans les dernières années un programme
de réactions élémentaires visant à fournir une information sélective sur les différentes sources
d’émission d’électrons en complément des expériences en ions lourds. Les mesures discutées dans
cette thèse se réfèrent à l’étude des collisions proton-proton à une énergie de faisceau de 1.25
GeV. Cette énergie, juste en dessous du seuil de production du η, est adaptée à l’étude de la
décroissance Dalitz du ∆, qui est l’une des sources importantes d’émission d’électrons dans la
région de masse intermédiaire (0.15 GeV/c2 < Me+e− < 0.5 GeV/c2). Pour valider les sections
efficaces et les mécanismes de la production de ∆ utilisées dans l’étude de la décroissance Dalitz
du ∆, l’analyse complète de la pp → npπ+ réaction à 1.25 GeV a été réalisée, ce qui constitue
la contribution principale de cette thèse. Les résultats, e.g. la distribution en masse, en angle
après correction d’acceptance de la production pp → N∆ et les distributions angulaires de la
décroissance ∆ → Nπ sont montrées et les comparaisons aux modèles sont discutées. Une autre
contribution de cette thèse est une étude de simulation des distributions d’angle d’hélicité, qui
a été proposée d’une part comme un support à l’analyse exclusive de la décroissance Dalitz
du ∆ et d’autre part comme une référence à des résultats préliminaires de distribution d’angle
d’hélicité obtenus dans les mesures inclusives de di-électrons dans les collisions Ar + KCl.
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Abstract

The detailed study of the pionic decay and the first measurement of Dalitz decay of ∆(1232)
resonance have been carried out with the High Acceptance Di-Electron Spectrometer (HADES)
at GSI, Darmstadt. HADES developed in the last years an elementary reaction program aimed
at providing selective information on different sources of di-electron emission as a complement to
the heavy-ion experiments. The measurements discussed in this thesis refer to one experiment in
this program, the study of proton-proton collisions at a kinetic beam energy of 1.25 GeV. This
energy is chosen just below the η production threshold and devoted to study the ∆ Dalitz decay,
which is one of the main sources of di-electron emission at intermediate e+e− invariant masses
(0.15 GeV/c2 < Me+e− < 0.5 GeV/c2). To provide a control of the cross sections and on the
∆ resonance production mechanisms required by the study of the ∆ Dalitz decay process, the
full analysis of the pp → npπ+ at 1.25 GeV has been performed, which is the main contribution
of this PhD work. The results, such as the acceptance corrected mass and angular distributions
of the pp → N∆ process and the ∆ → Nπ decay angular distribution are shown and the
comparisons to models are discussed. Another contribution of this PhD is a simulation study
on helicity angle distributions, which was proposed on the one hand as a support to the data
analysis of the ∆ Dalitz decay exclusive measurements and on the other hand as a reference to
the preliminary results of helicity angle distribution obtained with inclusive e+e− in Ar + KCl
collisions.

161


	Introduction
	Di-lepton probe as a tool to study medium effects
	Vector mesons
	Di-electron sources
	Importance of baryonic resonances in di-lepton emission
	Nucleon-nucleon bremsstrahlung and  Dalitz decay

	Evidences of medium effects
	The HADES program
	C+C collisions at 1-2 A GeV with HADES
	(1232) resonance production
	Results from  production experiments
	The One-Pion Exchange Model
	Pion angular distribution
	Teis fits
	Isospin correlations

	HADES results in p+p and p+n experiments
	Motivation of exclusive pion production experiments

	The HADES spectrometer
	Target
	The Ring Imaging Cherenkov detector
	The tracking system
	The superconducting Magnet
	The MDC detector

	The Multiplicity Electron Trigger Array system
	The Time-Of-Flight detector
	The Pre-Shower detector

	The trigger system
	Principle of trigger system
	Experimental conditions set in the p+p run at 1.25 GeV

	Proton-proton reaction at 1.25 GeV running conditions

	Simulations
	Pluto - Monte-Carlo simulation tool
	Inputs for simulation
	Cross sections
	Two-step generation
	Production of  resonance
	Parametrization of the  decay angular distribution
	Reference frame for + angle sampling
	Anisotropy coefficient A

	N*(1440) resonance production and decay in Pluto

	Advantages and limitations of the used simulation with Pluto event generator
	Kinematics of pp Nnp+ process in 4
	Dalitz plot in 4
	Momentum and polar angle distributions in 4 
	pp n++ np+
	pp p+ pn+
	pp pN*(1440) pn+


	Detection acceptance and efficiency
	Definitions
	Acceptance and efficiency matrices

	Opposite sector condition
	Momentum resolution
	Acceptance and efficiency effects on the pp np+ reaction
	Momentum and polar angle distributions
	Dalitz plot after all cuts


	Experimental data analysis
	Particle identification
	Event selection
	Event selection for pp events
	pp pp
	pp pp0

	Event selection for np+ events
	Uncertainty of event selection methods for the pp np+ reaction
	Comparison of two event selection methods
	Systematic error on the hard-cut method


	Trigger efficiency correction
	Event loss due to Time Signal condition
	Strategy of correction for TS
	Angular distribution after correction
	Uncertainty of trigger condition correction

	Normalization procedure
	Normalization for simulation
	Normalization for experimental data
	/N measured by pp elastic scattering
	Normalization procedure for np+ events

	Uncertainty of the normalization procedure

	Efficiency correction
	Acceptance correction
	Uncertainty of acceptance correction

	Error evaluation

	Results of pp np+ reaction at 1.25 GeV
	Dalitz distribution
	+N invariant mass distribution
	Proton-neutron final state interaction
	Sensitivity to the N*(1440) contribution
	Sensitivity to non-resonant contribution
	Neutron angular distribution
	Differential N invariant mass distribution
	Comparison to a simulation with FSI effect
	++ and + contributions
	Influences from the phase-space contribution
	Sensitivity to the cut-off parameter 
	Conclusion for the tests with the differential N invariant mass distribution

	 decay angular distribution
	Acceptance correction for invariant masses and neutron angular distributions
	Neutron angular distribution in 4
	(p,+) invariant mass in 4

	Cross section of the pp np+ reaction at 1.25 GeV
	Systematic comparisons of one- channels in p+p runs at 1.25 and 2.2 GeV
	Dalitz plots
	N invariant mass distributions
	HADES "homemade" cross section systematics for exclusive + and 0 production in p+p reactions

	The + angular distribution in CM
	+ angular distribution in the center-of-mass system in C+C reactions
	Investigations in simulations of pp np+ reactions at 1.25 GeV

	Conclusion for the exclusive pp np+ analysis at 1.25 GeV/c

	Contribution to the study of  Dalitz decay process
	Simulation for the  Dalitz decay in p+p reactions
	 Dalitz decay reconstruction
	Helicity distributions
	Motivation
	Definitions of helicity
	HADES helicity definition
	The one-boost / two-boost problem
	BABAR helicity definition
	Equivalence of "BABAR helicity" to "HADES helicity"

	HADES helicity distribution
	Influence from the scattered proton

	Pseudo-helicity distributions
	Definition of pseudo-helicity distributions
	Results from the Ar+KCl reactions
	Simulation study with p+p reactions



	Conclusion and outlook
	The isospin coefficients
	Helicity distribution definitions
	List of Figures
	List of Tables
	Bibliography

