HADES Overview

Recent results from measurements probing the high μ_B / high netbaryon density region of the QCD phase diagram

Simon Spies for the HADES Collaboration

The HADES Physics Program

The HADES Experiment (Heavy-Ion Setup)

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- Time of flight walls
 RPC and TOF
- RICH and ECAL for e⁺/e⁻
 and photon identification
- Forward hodoscope (FW) for spectator detection

Almost full azimuthal angle and polar angles between 18° and 85° covered

Nuclear Collisions at SIS18/HADES Energies

 Similar conditions as expected in merging neutron stars (Nature Physics 15, 1040–1045 (2019), J. Phys.: Conf. Ser. 878 012031, Phys. Rev. Lett. 122, 061101)

- Nucleons essentially stopped in collision zone
 - \triangleright Baryon dominated fireball N(B) ≈ 10 N(π)
- About 50% of protons clustered in light nuclei

Data Collection:
Phys.Lett.B 809 (2020) 135746
STAR 3 GeV data upcoming

Nuclear Collisions at SIS18/HADES Energies

- Nucleons essentially stopped in collision zone
 - Detected particles predominantly rescattered nucleons
- Slow spectators $\beta_{CM} \approx 2/3c$
 - Secondary interactions in spectator regions (pole caps)
- Centrality estimation more challenging than at high collision energies

Electromagnetic Probes

Reconstruction and analysis of virtual and real photons

Dilepton Reconstruction Performance

- Upgraded RICH photodetection plane involving future CBM @ FAIR technology
- Good time resolution and increased sensitivity
- Significantly improved lepton identification and double-ring detection → On average 16 hits per ring detected

- Significant statistics up to high invariant mass
 ≈ 1000 MeV/c²
- $\omega(782)$ and $\phi(1020)$ signals visible

Poster by Karina Scharmann: Contribution 201

February 2022: p+p \sqrt{s} = 3.5 / 2.55 GeV

- Scientific goals
 - Decays of excited hyperons
 - Electromagnetic transition form factors of hyperons
- Inclusive dilepton spectrum
 - High statistics in the φ(1020) invariant mass region and above
 - \triangleright Clear signals for $\omega(782)$ and $\phi(1020)$

Poster by Karina Scharmann: Contribution 201

Dilepton Spectra and Flow from Ag+Ag

- Negative π^0 flow observed at $M_{ee} < 120 \text{ MeV}$
- v_2 becomes 0 at $M_{ee} > 120 \,\text{MeV} \rightarrow \text{Dileptons}$ are penetrating probes

Poster by Niklas Schild: Contribution 683

Dilepton Excess Radiation

VDM describes excess radiation in heavy-ion reactions properly using coarse graining approach!

First direct evidence that VDM works for baryons

- Studying Baryon-p coupling using Pion-induced reactions
- $p_{\pi} = [0.66, 0.69, 0.75, 0.80] \text{ GeV/c}$
 - Second resonance region

- $\pi^- + p \rightarrow n + \pi^+ + \pi^-$
 - PWA using Bonn/Gatchina code with invariant masses and angular distribution (not shown)
- $\pi^- + p \rightarrow n + e^+ + e^-$
 - Predict dilepton emission using strict VDM
 - Comparison to different approaches and models

First direct evidence that VDM works for baryons

 Modification of vector mesons in a baryonrich environment (VDM: Medium-Emissivity)

 Effective transition form factor (time-like) extracted by subtracting QED expectation from exclusive invariant mass distribution

Collective Phenomena

Flow, Correlations, Fluctuations of (abundant) particles

Flow (Au+Au)

- High precision measurement of Proton, Deuteron and Triton flow coefficients up to v₄ Eur.Phys.J.A 59 (2023) 4, 80
- Important input to model calculations to constrain of EoS of compressed baryonic matter
- Correlations of flow coefficients can be studied event-wise

Poster by Behruz Kardan, (Christoph Blume): Contribution 304

Flow (Au+Au)

- High precision measurement of Proton, Deuteron and Triton flow coefficients up to v₄
 Eur. Phys. J. A 59 (2023) 4, 80
- Important input to model calculations to constrain of EoS of compressed baryonic matter
- Correlations of flow coefficients can be studied event-wise

Poster by Behruz Kardan, (Christoph Blume): Contribution 304

UrQMD Simulations: EPJ C 82 (2022) 510

Two-Particle Femtoscopy Correlations

- High precision measurement of correlation functions of Protons, Deuterons, Tritons and Helium3, as well as Proton - Λ and γ - γ
- Direct access to study the interactions determining the EoS of compressed baryonic matter including Hyperons

Talk by Mateusz Grunwald Wednesday 06.09.2023 16:30

Poster by Maria Stefaniak: Contribution 682

Statistical Hadronization Model

- Production rates of non-strange hadrons reproduced by SHM
 - ➤ Ideal hadron resonance gas model sufficient
 - Feed-down from excited nuclei states needs to be considered
- Chemical freeze-out point aligns well with world data

Poster by
Marvin Kohls:
Contribution 622

Strange Hadrons

Reconstruction and analysis of hadrons containing strangeness

Weak Decay Reconstruction Performance

- Large phase space coverage with low statistical errors
- Data points well described by Boltzmann functions
 - \triangleright Extrapolation to 4π

Strange Yields vs. (A_{Part})

- Production below (at) free NN-threshold
 - Missing energy provided by the system
- Centrality dependence compatible with universal scaling assumption:

Mult
$$\propto \langle A_{Part} \rangle^{\alpha}$$
 with $\alpha_{Au+Au} = 1.45 \pm 0.06$

- Hierarchy in production thresholds not reflected
- > Suggests scaling with primary ss creation
- Hint for quark percolation
 K. Fukushima, T. Kojo, W. Weise, PRD 102, 096017 (2020)

Strange Yields vs. (A_{Part})

- Production below (at) free NN-threshold
 - Missing energy provided by the system
- Centrality dependence compatible with universal scaling assumption:

Mult
$$\propto \langle A_{Part} \rangle^{\alpha}$$
 with $\alpha_{Au+Au} = 1.45 \pm 0.06$

- Hierarchy in production thresholds not reflected
- > Suggests scaling with primary ss creation
- Hint for quark percolation
 K. Fukushima, T. Kojo, W. Weise, PRD 102, 096017 (2020)
- Ag+Ag: identical slope within errors $\alpha_{Ag+Ag} = 1.48 \pm 0.06$

Poster by Marvin Kohls: Contribution 622

Reconstruction of Σ⁰ Hyperons

- Σ^0 Hyperons measured via their two-step electro-weak decay chain: $\Sigma^0 \to \Lambda + \gamma \to p + \pi^- + \gamma$
- SHM capable of describing Λ / Σ^0 ratio almost perfectly
- Λ / Σ^0 ratio sensitive to differences between transport models

Talk by Marten
Becker Wednesday
06.09.2023 10:10

 Possibility to investigate differences between various SHM fits and transport models

Reconstruction of double-strange ∃ Hyperons

 = Hyperons measured via their double-weak decay chain:

$$\Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^-$$

- Excellent combinatorial background suppression enabled by two aNN
- Significance slightly below 5σ yet clear signal above combinatorial background observable

- First measurement of double-strange Ξ⁻ Hyperons in few GeV heavy-ion collisions
- Outlook: Improved reconstruction efficiencies using KFParticle package

Hypernuclei

Reconstruction and analysis of Hypernuclei

Hypernuclei Lifetime Measurements

- ${}_{\Lambda}^{3}H$ lifetime of $(251 \pm 21_{stat} \pm 30_{sys})$ ps compatible with free Λ lifetime and earlier measurements measured
- ${}^{4}_{\Lambda}\text{H}$ lifetime of (216 ± 7_{stat} ± 10_{sys}) ps measured • 4.85 σ deviation to free Λ lifetime
- Interaction cross-section within first 40cm of HADES detector material ≤ 0.5%

Outlook: HADES and CBM @ SIS100

- HADES and CBM will be operated at the SIS100
- Angular coverage of both detectors complementary

Talk by Claudia Höhne Wednesday 06.09.2023 12:00

Outlook: HADES and CBM @ SIS100

- Investigation of the QCD phase-diagram in the 2.7-4.9 GeV energy regime
- Interaction rates of up to 10 MHz with CBM using free streaming data collection
 - Rare probes can be studied in detail
- Di-electron and di-muon setup available
- Micro-Vertex-Detector / Tracker
 - Reconstruction of further particles possible e.g. $Σ^{\pm}$, D^{\pm} , etc.
- CBM physics program: Lect.Notes Phys. **814** (2011) pp.1-980

Summary

- HADES detector is upgraded with FAIR technology (ECAL, RICH, iTOF, STS1,2 and fRPC)
- High statistics in dilepton invariant mass spectrum
 - \rightarrow $\phi(1020)$ signal visible in heavy-ion collisions
- First direct evidence that VDM works for baryons
- Detailed analyses of Protons, Light Nuclei and Pions
 - \triangleright Multi-differential flow measurement up to v_4
 - \triangleright p+p, p+A, A+A, p+ Λ , γ + γ Femtoscopy measurements
- Universal strangeness scaling holds in Ag+Ag
- ${}_{\Lambda}^{3}H$ and ${}_{\Lambda}^{4}H$ lifetime compatible to previous measurements
 - \triangleright 4.85 σ deviation of ${}^4_{\Lambda}$ H lifetime to free Λ

The HADES Collaboration

Coulomb Potential

HADES allows to measure Pions down to $p_{lab} \approx 60 \text{ MeV/c}$

All Plots: Ag+Ag $\sqrt{s_{NN}}$ = 2.55 GeV

- Coulomb potential V_c and effective charge radius r_{eff} extracted from π^+ and π^- transverse momentum spectra
- $V_c(\langle A_{Part} \rangle)$ well described by $V_c \propto \langle A_{Part} \rangle^{\alpha}$; r_{eff} in peripheral events error-prone due to spectator contributions